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This series includes translations of Selected items from the
_Soviet literature on hypersonic serodynamics, magnetohydro- -
' dynammcs, space flipht mechinics, propp181on systems (llquld

solid, nuclear, ion, plasma), propellants and comsustion, in-

qtrumentatlon and control, guidance, and.navigation,. naterials
and structures, and “space ‘commmications., The serles is pub~
lished as an aid to U. S. Government research.
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On the Theory of Gas Flow in the Layer Between the Surface
of a Shock Wave and the Rlun% Surface of a Totatlng Body
(. A Slezkin) T P LI . .

Approximation Method of ualculatlng Shock Waves and Thelr )
Interactloqs (G. N. Ly@khov et al) N

Deceleration of a Supersonic Flow in Wind Tunnel lequers'
(N, N. Shirokov)

Shock Tube for Measurine Drag Coefficients of Bodies in Pree
Flight (Yu, A, Dunayev et al) ,

Information on the Status of Soviet Research on HJpersonlcs
(M, S. Solomonov) i

Flow Around a Conic Body During Motion of a Gas With High
Supersonic Speed (A, L. Gonor)

Calculation of Axisymmetric Jet Nozzle of Least Weight
(L, Ye, Sternin)

Experimental Investigation of Self-Oscillations of Square
Plates in Supersonic Flow (G, N, Mikishev)
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Self-Oscillating Systems in the Presence of Slowly Changing y ~0-1ls2
External Influences (A. A Pervczvans}d,y)

One Approximation Method of Investigating SelfOscillating ! .
Systems in the Presence of Slbily Chahging External ON_THE THEORY OF GAS FLOW IN THE LAYER BETWEEN IHE
Influences (V, I. Sergeyev) . SURFACE OF A _SHOCK WAVE AND THE BLUNT SURFACE OF A
ROTATING BODY

Izvestiye Akademii Nauk SSR, Ot~ N. A. Slezkin
. deleriye Tekhnicheskikh Nauk,
Useful Interference ,of an Airfoil and Fuselage in Hypersonic 9ly Mekhanika 1 Mashinostroyeniye, [News
Velocities (G.-L. Grodzovskiy)- --- - Of the Academy oi Sciences USSR, Dep-
R artment of Technical Sciences, Mechanics
Flow Around Bodies by a Non-ideal Gas Flow With High Supersonic 100 and Machine Building], No. 2, Mer-Apr 1959,
Velocities (G. A. Lyubimov) | ) Moscow, peges 3-12

On the Motion of a-Sl-ende‘m:S_qJ,, d Body Under the Action of a
Strong Shock Wave (S.”S."Gl'.i.got'ya'n%v

Nonlineay Problems of Statility of Flat Panels at High Super~~. 105 As is known, when e body moves ir eir with a velocity exceeding
« sonic Speeds (V. V. Bolotin) . o the velocity of sound, & shock wave is produced. If the forward portion
T - - . 4 of the surfece of the body is blunted, then the surfece of the shock
Sfperinte oy e Pt uassesingier wingd 31 Sl © 3 e e ot oo aPechen L] o
€l o le X - . > o <
€ ‘e ) e'v;‘ &t N - consider this intermediate leyer between the surface of the chocli wave
One Form of Equations of Supersonic Gds Flow (F. S. Churikov) 117 :datﬁyzﬁic:hﬁht::ebiﬁxlZ% °f‘_t?f zgzcid&eigzigi;&% ;r%‘rf.;;}es-
. g5 is af e
Estimation of the Permissible Irregularity of Rotation of a 123 sure and by viscosity forces. This assu:fzption can be Qustifiac’.‘ln the
fomizie Bole S et Msud izt e ? et e L
or . A, ‘Slo iv) - X wtance b v W Ol Zas n i S, als r
N ' ¢ g ~»'k1y) . ) the flow within the limits of the pressure jump itself. As long os the
Al1~Union Conference on Static Stability of T\eronlac;hlhery: 127 considered intermediate layer is bounded on one band by a solid well and
(Ye, I. Boldyrev) . g on the other hand by the surface of the pressure peak, then the viscosi-
' ' BREEN ’ ty of the gas should exert a substantial influence on the flow of gas
Goordination Conference on S"ta‘tiility of Gas Turbifes 133 in such a layer. Therefore, the problem may concern merely whether the
(Ye. I. Boldyrev) X c viscosity should be computed in accordance with the Prandtl-layer model
N : ! - or in eccordance with the Reynolds-layer model. In our second article
(2] we bave shown that the Reynolds equations, which he proposed in the
approximate hydrodynamic theory of flow in a lubricating layer [3], are
applicable not only_ for small Reynolds numbers, but also Reynolds numbers
on the order of &£ -1, where € is the ratio ‘of the man thickness of the
layer to the length of the longitudinal extent of the layer. On the o-
ther hand, the Prandtl equations for the boundary layer are correct for
Reynolds numbers having an order &£~2, 1In both cases the characteristic
dimension of length, £, is taken to be the length of the longitudinal
extent of the layer, and the characteristic velocity is taken to be the
maximum velue of the modulus of the veloeity within the confines of the
layer. The coordinate x axis is +taken to be a curved coordinate along
the surface of the body, where the y coordinate is taken +o be the
length of the segment along the normal to the surface of the body.

We shall henceforth use two ideas in the inveStigation. The
firvst is that it is useful in certain cases to stratify the region of
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gas flow not only in the longitudinal direction, seperating the laminar
sublayer, the turbulent layer, and the region of the externol flow, but
also in the transverse direction, separating the foilowing portions of
the layer: 1) the Reynolds layer, 2) the Oseen layer, and, 3) the
Prandtl layer. The second idea is to use the method of successive exami-
nation of the development of the phenomenon within the limits of the in-
dividual sections of the layer, with a transition from one section to
the other. This idea makes it possitle to employ linearized equations.

1. Statement of the problem. We shall consider that the body
is stationary, and that the flow of gas has a velocity Uoe at infinity,
directed parallel to the symmetry exis of the body from left to right
(see Figure). We denote the angle between the tangents to the surface
of the shock wave and. the velocity vector of the externsl stream by B,

e

E T

UL :
Rp=taal Pofep g fop, (1.3)
Ha Foo Py Fa

. If we consider the ratio j’w/? small and of the same order
as &, and if e assuce .that.the Reynofd,s number of the external stream
Ya n48 &0 order of g‘_z,- the Reynolds number for the flow of:gas. inside
s intermediate layer considered by us will be of the arder £, and
means in turn that under these assumptions the layer between the.
ace abock wave and the blunted forward portion of the surface of
5ody can bs considered as a Reynolds layer.

A In the note/l/ we considered the case when €=772 and the angle
2 is almost 772, asd did not take into account the varisbility of the
ity within the limits of the layer. The latter premlse was also
< starting point .in other iavsstigations devoted to the same topic;

while the angle between the tangent to the surface of the Dbody and the
same direction of the velocity vector we denote by & ., If we use the
known formulas for an obligue shock wave [4], derived under the assump-~

tion that the viscosity and the heat conduction of the gas are not ta-
ken into account, we can obtain the Xollowing equations:

"o [:—:4 sin3sim (B --8) + cosBcos (3 — 9)]
("m[—zﬂsin?cos(p—ﬂ)—%cos,‘)sin(g—o)] (LY
Pa
o3 (:f)'si"’ By Pa: Pot ol sin’?(‘ - :T:*)

vhere the index A denotes the velues after the passage of the shock wave,
i.e., on the outer boundary of the intermediate layer considered by us,
the varisble thickness of this layer being denoted by h. It follows from
Eq. (1.1) for the modulus of velocity Up thai for values of angle p that
differ little from n/2, the maximwo value of the velocity modulus Up will
differ little {rom the value Usw foo/[A

Ua~lai= (1.2)
Fa

The ratio of the coefficient of viscosity to the densivy, /4./5—‘
will not agree within the limits of the layer with the value woe/fo0 5
in the layer Ty > Toe vwe havegda > Soe.  The viscosity coefiicient

increases with increasing temperature, il.c., JrA g e

Thus, it can be assumed that the arder of the valuss A4/P,
is close to the arder of e / P . In this case we obtain for
the Reynolds in the layer the following relation

» ia a recently published paper by Lee-Ting-i and Geiger/5/, the
Jistance between the surface of the shock wave to the critical point
wne surface of the body is also dutermined by using the equations
aotlon of the gas without taking intol.account the varlability of
density in the layer and without taking into account the viacosity

gt

We propose that when the surface of the shock wave is closely
ajacant to the surfacs of the blunted body, the influsnoce of viscosity
szculd be taksn into account not only in the equations of motion of
ihe gas, but also in the derivation of thé relations on the surface of
tne shock wave, The purpose of this article is indeed the derivation
<f tas approximate equatione of the Reynolds type, suitable in certain
zages W for the' flow of gas ir a thin layer between a strface of.a. -
snock . wave and a blunted surface of the body, and to . :use in
‘the golution of these equations the .conditions on the peak, with allow-
ance for the viscosity and heat conduction of the gas.

2, Equations of Reymolds far the flow of gas-in the las'er.

We shall consider a section of the layer with absclissa xg= f.
In this section we take the point B, at which the longitudinal velo-
city u has a maximum value U, The valuss of-the-other quantities at
the same point will be dencted by pg, $p; Tps A3» ani/\s..ﬂe‘,intro-
duce the dimensionless variables and the dimensionless characteristics
o7 gas flow in-the layer as follows: . . T @4

r=lz, y=sly, wu=Ugu, v=eUid, p=pspi 6=pup

Crn
>

T=TpT,. w=paw, *=Drgk, Cp=cputi T

eplly? e

M= -
TPy spp’n

= (1= ) MRy -
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Ve shall consider the case of & plane-pirallel steady-state flow
of a viscous and heat-oonducting gas without taking into account the
mass farces, In this case the known equations of mction of the ge8/6/,
when uaing (2.1),ere expressed in the following form

’ B
Ran"("lgi'?'P:;.;: "—7‘7-';:":,—’:1'5%;(!‘1?—;:)4-
(0 [2mfndm &\, 2
+e i em-Z] mk

i‘p.(u,:x—f‘;

%
=)

3
+ "'51(!‘1
dlnm) | Apm)
. i =0
p=nTy = (T2), 3y =0 (Ty)

Rpt*p, [u.g—‘(c.T.)-% v.-é-"z;(q T,)] =¢'Rp Y:’ (u,;ﬁ+ v.%') +
+ A [ % (o3 + O T+ S G

y—1 (o Ou\t [ ATqound | or\S 3 omdw 1 dwidm
e ) B G+ STl
where A 1s the heat squivalent of wark. To cbtain froa Eqs. (2.2) the
well known equations of the boundary layer, it is necessary 1o put

: . Ry=% 29
and agsune that the nusbers Mg and Fj are on the ordsr of unlty.

My~1, Pyp~1 . 24

. Putting then & =2 0, ve cbtain equations for the flow in
the Prandtl boundary layer, Since at & = C the Raynolds number
{noreapes to infinity, then the equations for the flow ia the boundary
layer will be the asymptotic equations of flow of a vimcous and heat
conducting gas. On the other band if we put

Bami, M=o Pyt . as

and then decrease the parameter £t 0, we cbtain from Bqe. (2.2) the
well known Reynolds equations for the flow of gas in a layer, which

4
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after transformation to dimensional varisbles assume the following
form .

35 _ 0 [ o\ . 9 (in) , v}
2Ry, E=eo -0 @

p=3ReT
0= 305D+ A, wmk AmrD

Inasmuch as Eqs. (2.6) were also obtained by taking the limit
Rp ~» o0 , these equations can also be called asymptotic equations
£8r the flow of viscous and heat-conducting gas in a thin layer. The
difference between the Prandtl and Reynolds equations consist merely
in the order in which the Reynolds number goes to infinity, or the
order in which the ratio of the mean thickness of the layer to its
longitudinal extent diminishes. .
. We assume that to study +he flow of gas in the vicinity of the
forward critical point on the body there are many grounds for using
Eqs. (2.6) rather than the Prandtl equations. .

In reference/2/ we uave.shown that for the case of an incom-
pressible liquid it is sasy to improve the solutions of Egs. (2.6)
by using successive approximations. In individual cases of gas flow
in a layer, the solutions of Eqs. (2.6) can also be made more
accurate by representing the solutions of Eqs. (2.2) in the form of
series in powers of the small parameter €.

3. Lineaized equations for the flow of gas in the layer.
Eqs. (2.6) are in general nonlinear, In order to obtain
from Eqs. (2.2) linearized equatlons for the flow of gas in a layer,
we shall procesd with the following argusent. For the nearest
vicinity of the considered point B we assume that the dimensionless
variables are represented in the foram

=1+, =2z, =148, p=13p @an
Tyl teT, wm=1+s, =140, =1+ :

Inserting (3.1) into (2.2), using the assumptions (2.5) and
retaining only the terms with the lowest power of the
parameter £, we obtain the following equations

e 0P W o p=T, "0 @

« op_ 4w o, o ye o
IME 3:; tRp oyt an - 9n U

S .
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If in the resultant lq;; {3.2) ve return to the initisl
dimensioral varisbles, 1.6., we put v
P denkd | R
amd. pmin Vet YT o
»—P;  _T=Ty P Tuernlr—1)
F= .,.". T _Ar,. eTnernly

then ws get the simplest 1inearised Raynolds equations for the flow
of gas Sn' & layer .

n O _ P g (3.4)
0, p Ty

M o LA
%-F.W! T;--O,“ “-5;4'“.

i

Ou the otharhand, if ve put . o
p,=‘i+|p' . . B9

tha T A the wiswmption (2.5)

teln all the remaining equations in (3,1) ead ),

B elis s BT e S M
tar retur:

D otis dimastonsl vorisbles; vo-obtain a new slaple fora of

1inearised Reyrocids squations -‘ .

9P L0
- T [RXD}
; 1 aTy
S U (53 ) =0,
Ve elinizate the density from the comtinuity equation vith the
ald of the equation of state :

2qaT e
’n+" 7;+an

ons (2.5) the
On the other hand, if we use instesd of assumptions (2.5)
assuiptions in (2,3) and (2.4), again make nut:! -.u":um
equations in (3.1) and repest a1l the preceding caloulations,
cbtain the' follow. Oseen-type fqu'dou . .
e _opan g MBlo pafiT
wlngp=—FHma 7= &% LR

) )
Sﬂsun[ﬁn + TB(;;_)’]%- All.-;;—

If however we use assumptions (}.5), the Oseen-type equations
are represanted in the form : :

o ap ., o p
Uy - oF Mg U

M oe o4 dp 4 Ty
=t tinGa- 5o

e T . s
SPI:UM["PB + 7‘1:(71?)5]4{,7 - -"/n?-,g‘ +hp %

The linearized equations (3.7) were usmed extensively in the
monograph of Targ/7/ to solve problems in the deveiopment of flow of
en incompressible liquid in tubes and diffusers. The results of the
calculations were in satisfactory agreement with the results of the
experiments, not only with respect to the length of the initial portion,
but also in respect to the development of the profile of ihe velooity
distribution over the sections. For this reason one can assume that
the foregoing linearized squations (3.6) or (3.8) can‘be used to solve
certain types of problems ia the flow of gas in a layer.

4. Dynamic conditions on the surface of the shock wave. The
dynamic conditions that relate the characteristics of gas ‘motion with
the velocity of discontinuity propagation, with allowance for viacosity,
were carried out by Dubame and considered in detail in the work by N.

Ye Kochin/8/, These conditions can bs written in syabolic form as
follows

0 =0, 0 [V] pa]= 0
TIVV] e T + JI.,...“J___[A%}:o
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whare $* 1s the spesd of propegation of the wave froat, ¥ the velooty °

veotor of gas motion, udjnilthl stress ¥xk vector oa an ares adja-
cent to the swface of the wave; the vestor normal to the area is
dirscted towards the outer flow (ses. figwre). In the oase under con-
sideration by us, of a plans-parallel flow of gas, these conditions
(4.1), after certain transfornations, can bs represented as

Pa= Pt (1— :f)%t/.,- sin? B L (Fanda

- z/.[u-pm(p-_e) = .mp.an@-,p;]_, ::-.%—i_’l_:'_.v’i 63

Ty - U..[crvhln(p-——l)_—%slnpcos (p'—-ﬁ]-—."—":‘el—'iﬂ %"‘,}i—

peUntinp[§ AU U0+ craTambraTa 4 =ty

+4A __‘*;:" ] (), — Alatuscon(B— O +easin(B—01 =0 (hdy

The projections of the vector of the deviator stress on the
normal,T nn, and on the tangent, Tpg, will be represented in the
following form

= — R (2 B 2 [Ssi (3 ) + o B0
- .'?~£+§y!)sm2(3_o)] 4.5y

ox

=t — ) sin2(8—8) + (52 + o) cos2(3—0)

If in the right halves of Eq. (4.5) we go to dimensionless
quantities, using (2.1), and xafuxu retain tke terms of highest order,
We can obtain the following approximate expressions for the projections
of the deviator stress .

1.nz—p%sin2(ﬂ—0), f..zp%em(p—a) “.R)

Thus, the relationa on the surface of the shock wave, with
allowance for viscosity and heat conduction, are represented by Eqs.
(4e2), (43}, (4.4), and (4.6).

5, General expressiors for the characteristics of gas flow in
the intermediate layer. The simplest linearized equations (3.4) vere
used in our article/l/ under certain supplementary assumptioas. We
shall now consider the use of the system of Eqs. (3.6) with pertial
allowance for tho variability of the density.

If we retain the previous notation, but consider not a plane-
parallel flow but a gas flow with a symnmetry axis, then the 1inearized
equations, with partial allowance far the vaviability of the density
and with approximate replacement of r by the lengths of the arc’x,
will be represented in the following farm

ap. LA Ll a3 T
EC‘:""BT:' W(zv)-{--;;[z(u—}-Unp—z-—U,,ﬁ)]‘:U
aT P -
P"+1 3

The boundary conditions on the sirface of the body and on the
swface of the shock wave will bave the form
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=0, v=0 T=Ty npmy=0 5.2y
w=up vEry, Tw Tx wpmy=h

The solutions of Eqs. (5.1) subject to bouadary conditions (5.2)
will be given by ths equutions )

1. 90p »
Ut — b+ Y

2
:v:-—-.x%[z(u—#v.;%—l/n;;)dy] 5.3

T=—7To+(74'—7n)-:—
If in the second squation of -(5.3) the.upper ldait y is replaced
by h, the operation of differentiation with respect to the variable
x is taken outside the integral aign, and the first and third squationa

of (5.3) are mmmb then used together with the boundary condition (5.2)
for v, we obtain en equation for the pressurs :

Lo )= e (D)

30 ro(@+2)- A2

From the first Eq. (5.3) ve get

wy _ kP4 YA 5.5)
Gla=m et ¢
Insarting (5.5) Anto (4.6) and then into (4:2), (4.3), and (4.5)
we obtain the following expressions for the cherscteristics of gas '
flow on the very surface of the shock wave - - ’

Pam Pat (1= 22 palutsi’h —sin2 (5 — o)“[-;-i,’:— + "—';‘-]A(s.u).
ol i mesnmasa]
- U.[eo.peu(p—c)-p.%:—ainpqn (p—o)}_

A AP coa(d—8)eoa2 (p—
T Hala _T_Ll‘i[_l

T ARY
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vp = Um[tosﬁsin B—— :%s'mi! cos (B -9)]-—-
Bn n(—Ucos2@—0 K dPasin(3—0)cos2(3—0)
T el A S5 HoUg & a3

> T,—Te 1 - ”
:,ATA—cmT,,+;m—UDﬁ;§~ n ==A{'2—(dao”“UA)T

Pota b AN Gng (-0 -
P.x—K\T-’-%‘u "\.sm2(_ )

- cos 2(f — b)[ '—',- 'f"—‘- i l"———";:" ] [ua cos(3—0)+va sinp— 0)]}»

Eqs. (5.4) and (5.6) must bo used in conjunction uith the
geometric relation
vh B -
.J;:gu(p..o) BN
We chose as the characteristic velocity in section 2 the

maximun valus of the longitudinal velocity u in The gection yith
abscissa xg® E Since we have

be
from the ardinate of the point B vill)determined by the equality

ok _Eafa (5.8)
Yp =7 7 Fdp,. dr

Inserting (5.8) into the first and last equations of (5.3)
we get

) By A ‘)’
T Wdp, dF

1' Ppla
Tp=Te+ (Ta— To)[‘i — W]

If we use the approximate equation of state in this case, we
obtain the following expression for the density

Tn 500
b = AT STy ‘ e

ll,,

004200140002-4
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Sincs the initial equations {5,1) are correct for & section
vith abscissa 1, then the relation (5.4) and relations (5.6),
(5.9), and (5.x8) are carrect, generally speaking, for v szall
vicinity of the intermediate layer gonaidered by us nsar the fixed
ssction, As one moves avey from the given section towards the broaden-
ing of the layer, the velocity Uy increases and the Reynolds awzber

| fis = aUn%s G0
*g

will also increasse; as one approachea the symistry axis, this Reynolds

nusber (5.11) will dscrease. Consequantly, the vicinity of the layer

for which the foregoing relations are valid can ba extended with

lesser errcr towards the sysmetry axis-ihan towards removal sway from
this axis.

6. Limiting relations for the symmetry axis, Lst us assume

bed in section 5 are correct also for those
sections of the intermediate luyer conaidered by us, which are
suffioclently closs to the symmstry axis of the bluated body. Subjsct
to ..this assusption, we perfara in theme relations the transitica
to the limit, decreasing the absoissa x to O, incraasing the angle
to¥7/2, and putting £x 772, Ve then bave

sinf—1, cosf~0, «in(3 -0)- -0 ©D
cos@—W)—1, sin2(8—8—0, cos2(f—0)--1

Using the L'Hospital rule we got

(=), -2,
® s

[‘_'_':.‘.!i:!L]”. =£-2 @y
G

Since on the qmt'ynnltbpraummnldhucm
valvs, e get ’ -
S < .
(F)u=0 ©3

From Iq. (5.7) ve get

R iy, (&), -0 Y

Using (6.1) and (6.3)we cbtain from (5.6) the follouing liaiting
relations

@ 50-Yr 2014/03/14 :
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(Madess =0
Ware= = 2 U=~ b

(Padxw = Poot (1 — k) pol'os”
Ta=Toy _ [P 1
(caTa—cmTo+ M 20— )m_ s[l2a—b+ U0 - »]
Differentiating the secosd Eq. (5.6) and using the faregoing
equations for the limiting transitions, we get °

2 ) 3
et ] =Ua[ 4 (- )~ 5 ., 69

If we start with the first By, (5.3), we find that the
longitudinal velocity along the entire symmetry axis equals O, and
consequently we oan put

Ug=0 ' (8.7)

From the L'Hospital ruls ve get

(XA dup | LA oTPa '
“m(—z—),*, =g MmlT ), .= (.8)

Making the limiting transition in Eq. (5.4) and using (6.5),
(6.3), (6.4), (6.8) and (6.7) we gt

g _j W3 dPs Jduy .
._Al-?g;!zp—ugl—, — I TJ, , (6.9)

If we differentiate the first equation of (5.6) twice and then
make the transition to the 1limit, we obtein
(6.10)

2

e R Sl S

Inserting (6.9) into (6.6) and (6.10), we obtain the following
two relations .
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@
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(et~

f o m—tape-n@ G2,
Eliainating ap/dx® from (6.11) we gut

‘ (@) evF+emo ®42

- (1—&)1«"("‘"“". -1)

L7 ]
-h---’,[lu-,f-a-mg%]

emm et - = 3 ()]

Solving Eq. (6.12) and seleoting the aign in froat of
Toot in this sclution on the basis of the e ingle flaust
decrease with inoreasing x, we gc: contitimtoat the dngle fuist

()=t +Vi—o (6.14)

Thus, 17 ve assume o8y, 453 (16 /2x), knoun, specsy

a 7 8] -
lé.nl.nry values of h*, k, &udmp on ths basis some :)th:' conlrd.:n—
Lona, ve can dstaraine the vilm of (4@ /a7}, from Eq, (6.14), amd
w, therefore have in the nczrest vicinity or ¢hs symmetry lzil

p=z+(2)= : (6.15)

From the foregoing data and froa vajus of {

d¥/dx
obtd(.zed from (6.14) we can determine (d%:/d;-;’)o fzwr't?h{ 1'3.3.1‘:'
Eq. (6.11), and detaralne the valus of (duy/dx)o froa {6.6). We
then have for the vicinity of the symmetry. axis . :

p=(aht+ z’(";fr)‘. ua= (;:_ 33 T (6.16)

Next, golag to the sectlon close 4o the axis and determining the
angluﬁfur this section from (6.15), we can repeat the entire
argument and derive formulas analogous to (6.14), (6.15), and (6.16).
The last equation of (6.5) contains the temperature Tg on the wall,
which cannot be. considered assumed. In the first approximation this
temperature can be assumed squel to the temperature Ta. If one
assumes that the coefficient of heat capacity ¢y is represented by
a definite dependence on T, it is possible to determine from the last
equation of (6.5) the temperaturs Ty in terms of Tows Poos Uoos Foa 2
and k. In this cass it is poseible to determine from the temperature
Ty the viscosity coefficlent v on 4he axis and putfB= M4 in
Eqs. (6.13). Then, if Bqs. (6.13) are used, it is
enough to spscify the tentative value of the thicknass of the layer
h* on the symmetry axis.

Received 17 February 1958.
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3. EKochin E. Yo. Sobraniys zochi Collected Works), vol II . v, . . . . .
pp 542, Isd. AN SesRs frviound ¢ ° . o : T impiodmetion ag;thﬂogicr cii:hk;: Shook Vaves -
N CREEEER

Izvestiye Akodemii Nauk SSR, Ot- . : .G M. Lyakhov
deleniye Tekhmichoslikh Nauk, ~ - ' ° ""N. I. Polyekova
Mekhenike 1<}-iasﬁnos'broxeniye, : [New: Co -
of the Academy of Sciences USSR, Dep-
artment of Techrichl Sciences, Mechanics -~
end Machine Pwilding], No 2, Mar-Apr 1959,
Moscow, pages 13-18. -
. 1. Description of the mathod. The problem of propagation of
:kntwin stationary shock wave has at’ present not bsen sclved in general
form even for unidimenalonsl plane flow, The systenm of three quasi-
1inear first-order partial dif\ijerantinl equations

du u | 1 ép “ap dp u s o _

Srtugst 7o =0 K_fn;;—i—p;‘—x—— T -5;-._0 (1.1)
{infon describes the non-statiorary-shook wave, should be solved subject
to the boundary conditions on the front of the wave, i.¢., on the line
that is also sought and must itself be determined from the considered
system of equations. This circusstance qomplicates the fuk solution of
the problem considerably. T . .

. Vo PO .

The method proposed is based on the fact that the curven that
expresses the law of compresaibility of the medium, p=p (g ), ie
replaced by a broken line with segments of the type -

x_ﬂ‘tp-l + B

whers A and B are coratant within the limits of each segment of the
broken iine, 2o

Such an approxizatiocs vas first vsed by Chaplygin/l/ in.&
considepetion of gteedy-iinia £low of 270, 2rd wag #leo used by
L.I. Sedov/2/ and, Mﬁ.&,ﬂf’“_%m‘y’fl‘bi} by K.P.
Stmukov_j:qhﬁf. : !

In dense media the huet losses oan be neglected at pressures on
thy ordér of ‘tens or _even hurdteds of -atmospheres, and therefars this
method cdn find  wid - here, However; such-an apprbx;ma'tion is
possible alsc sn an analiysls ‘of “shock waves’in“sir, -in the cage whén
the presswre on the front doas not excaed 2 or°3 kgfom?, The ’
Hugoniot adiabet, which gives the connection between the pressure p
and the"specific volume V on the-front of-the -wave .

; Y e k—iYpr k- 1Ip RO}

¢ DpEk—i)pe Lo

differs in this cass 1ittle Prom the Poisson adlabat’. .
LSS gk pVE < (1.4)

S SNUSUNENENEE S

- \ .
ized Copy Approved for Release @ 50-Yr 2014/03/14 : CIA-RDP81-01043R004200140002-4



Declassified in Part - Sanitized Co

For illustration, we give the Values of the volume V, calculated
in accordance with (1.3) and (1.4), for certain values of P/Pp

:/ 5\— +0 1.5 20 2§

Vet 075 0615 053 according % 1.3

IVl D ome 0SF  sccording bod 2ii§
We write down the basic equations for one-dimensional plane case

in the Lagrange system of coordinates

m 9 -l L4
Regp=0 GF-Rm=0 ItE)

Here h is the mass of the gubstance between the initial and the
current sections

X A “ )
llss 'Jx=Syd.z, PTA’" (1.6)
s 0 .

Let the equation of state of the medium be
p=— AW+ B

Then the system of equations becomss
o . 9 o )y o _
oy de=0, Gt
From this we readily obtain the well kaown wave equation
»y &
5= un
the solution of which bas the form

= Fy(h— A + Fa(h + A1), x = L (11 (0 — A~ Folh+ A1) (1.8

Here F, and F, are arbitrary functions, which should be deter—
mined from the boundgry conditions, A is the velocity of propagation
of small disturbances in coordinates h,t. The quantity A corresponds
40 the acoustic impedance of the mediun ?c for a given section of
the approximation of the isentropic curve.

2. FPropagation of shock waves. We consider the propagation of
a plane shock wave in a medium, the equation of gtate of which is
7iven in the form p=p (V) while the presswre, as a function of time,
is defined at a certain section of this medium, which we
shall consider tha hnitial section. The boundary conditions are

18
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specified in the jnitial section and on the front of the wave. The

lavw of~mouou of the front is not kaown beforehand and must itself be

determined from the system of the principal equations. :
The boundaz;y.. conditi‘oz.zs on the froﬁt -of tk‘;e;,,aizo'ck wave are |

of the form . ! .t . . - .

 WP=p@=w

Here pp, @ o are the paremsters of the medium in fromt of the -,
:ﬁ:ﬂ front, while p, §, D, and uare, the parameters on the front of
wave, . o L .

Eliminating u from these equations we. get:

p—pe==pa2 D (Va -V}

Ii‘ztha curve p=p (V) is approximated by a.stralght - - -line
P —p8= -42 (V -V}, then @oD=4, i.s., the velocity of the front of
the dave coincides with the speed of propagatiod of the weak dis~

continuities. In this case all the states behind the front of the

wave move with equal velocity, equal to the velocity of the front.

The wave will proceed without damping and without a change i its

front. Let us consider the cage when the curve p=p (v) is approxi-

:u:t;:vhy a broken line (Fig. 1). On the section closest to the front
0

LR pmad b

Abocd

of the front we bave . %

= A"V‘-}- By

The velocity of the frost ln Lagrangian coordinates is
A P Fe
v=nD=V =7
It ig obvious that

e
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wbere corresponds to the apeed of p‘omlﬁon of

the ﬂ:llt section, and A, coxresponds to the last sec
oximation, It follows tro;‘:ihh t::t ff: 1;::‘:1;

miave propagates maré ra \y

Z::;‘ novuwm:‘:md‘.\y than the weak disturbances in front of it. -

Thus, when the curve p=p (V) is replaced by & broken line with sever

ssgments, the shock wave--changes 1ts sbape as it propagates. ’:::

magnitude of the maximua pressurs will decrease. BY reducicg

sizes of the segments, it is possible to obtain any degree of accuracy

in the determination of the wave parameters.
It follous from (2.1) and (2.4) that

p—p.—h‘?_;,(v.—v,), u=h_'l,(V.—-V-)
Taking (2.2) and (2.3) into account, ve got
- ) _ 4N
pmpo= g CTAENE
r - - 3 42"
(rom Rt M) @n
H

The flow between the section h=0 and the front of the wave is
determined by expressions (1.8), Hence we have on.the froat of the
vave -

2F, = p+ Andy 2F == p— Awt

In sccordance with {2.6) ve have on the front of the vave
2F, = pot s 2F3 Pu s

’

¥ S g
o= ;‘—:_'ﬁ_v h= y oY @n

If the approximation ;q,mnt- are sufficiently small, then,
as caloulations show, the fmu.on?l can be replaced on each of the

20
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88 by a straight line, while §, can be assumed constant. Such
& linearization of the boundary ecnditions mekes it possible to obtain® .
& solution in ea explicdt ard readily visualised form,

Ir f, (b"g)mwoonst, then Fp (bt Ayt)moonat on the 1ine of the
front, and Consequently, in the entire region 1 (Fig. 2). Irom the
condition at the section hae0 we deternine the function Fy (b -Agt).
Let, for exanpls, the ohange in the pressurs be specified in the
ssction h=0 in the following form

p=at (I.-h-f'h b‘—-'—.‘!) (2.8)

we}hhnn bave in the section h=0.
Fi(= AR+ Famatit
Hence in the entire reu;m 1
F.(h—u):.ar.fia;u) a9
Tp=Fi+ F._-..—-i(n‘—m AT
x-i(ﬂ.——ig- ‘L_[‘_ 2, - ;'._(n-m] amn

The  solutdon obtdnnd will be correct iu region 1 between the
esotion h=0, the front of the vave, in the straight line
Pay —
»

KAt =Tt )y Tt =
vbere‘ﬂ" 1 As the instant of tive when the pressura in section h=0

drops to & valws R, _ corresponding to the lower limit of the pressuce
on the n-th sectica 0} ths -approximation.

Lot us find the second brusdary of the region 1 — thefrout of
the shock wave, Since the function !’1 is dsterained by (2.9), then,

iagerting (2.9) into (2.7), we cbtelnta diffemtial equition for the
motion of the usve froat

2=o(- <50

where -
,-k.-%_..gg, kam2e—2Fs—po— A . (212

21
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Solving this equatlon ani taking into account the fact that
h=0 when t=0, we obtain the 1aw of motion of the front of the shock
wave

i am (208 4 Kt @ YT o + T | (2.13)

let now p == p_ _, in the saction h=0. The region 3 in the
b,t plane, where the p&s%\xre corresponds to the (N <1}¢h approxd-
mation segment, cannot make direct contact with region 1, since the

straight line on which p=const has & different slope
in the new region than in L. Between -the regions 1 and 3 there
should 1ie a region 2 of constant parameters, bounded by the charac-
teristics, For the region 3 the corresponding caleulations yield

i . - .

p=a— ,T::(h —Aunl)y,  u= ;,%:,ln — ey (= toat)] 214)

A ST P I TS | Oy
hp= 5 [Zh(l—-.)-{-k,._,—:-u._,—-]/ s @) hita bl =% ]+h 2 (2.15)

Here h g and 7 ave the values of h and€at the point where
the front starts out in region 3. R .

We determine analogously the flow in the succeeding reglons.

Thus, for the pressure specified at a given section of the
medium, we determine the 1aw of motion of the front of the wave and
the flow behind the front.

3, Reflection of shock wave. Let us consider the reflection
of a plane shock wave from a rigid partition., In the case
of den single-ccmponent multi-component gedia, thers is no doubt
that the approximate method considered above is applicable to the
solution of this problem, since the heat losses dus to reflection
are small. In air the problen can be solved by this method only at
small pressures, .However, a3 the front of the wave reflected from
the partition moves into the incident wave, the pressurs on the
soont of the reflected wave decreases, and with it the entropy jump.
To the contrary, the entropy of the perticles in the incident wave
increases with the distance from the partition, Taerefore there
occurs during the reflection an aqualization of the entropy at
various particles of the medium,

On the front of the reflsctad shock wave we have

ws--w) = @D AR pr—tn= (D w) e ) (BN))

22
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shere the index 1 corresponds to the incident Gave and the index 2

to the reflected one.
. Let the states behind the front of the reflected and incident

waves lie in different gections of the appfoadmation
p=— AN +B, m=—AVstD

Assuming hzso " we obtain an expression for the pressure P
in the reflected wava: acting on the partition during the fnxx ini%%al

instant of reflection. - .
N At B B
Cpam S [B- B - rar ) E

ERT NI S, SR

In the case of air this p formula is pzjact_icany the sams &5
the Izmaylov formula. Taking into account the connection between the
presswre in the incident and reflected waves at A} ~» A,y we" £ind
that the plus sign should be taken here.

Let us denote the line of the front of the reflected wave by
1 ®he (t). The solution in the region of the reflected wave has the
form

Fih— Ay =5 (Pt A Fallt+ Ag)= - (pa— Artt2)

The srbitrary functions must be V'fuund from the boundary condi~
tions. The conditions on the front yield . .

2F, = py -+ Agy+ oty 2Fy = py— Ay — 890 3.3)
Here
h'& L¥ n(,“bﬁ.‘)d—ﬂ’,-aﬁ’ﬂs
@ = T Rg! ?asr-‘i“+ 7 f’—-—————r——_‘—' .,,,‘. s (3.4)

Unlike-the incident wave, the variables in the expressions
F, and Fp are not only the functions (f 1 andfz, but also W) and pyy
uhcb conglicates the golution.

1If the reflection is from a stationary partition, the second

23

Declassifi - i
ssified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/03/14 : CIA-RDP81-01043R004200140002-4



Declassified - . i
ied in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/03/14 : CIA-RDP81-01043R004200140
: R 002-4

boundary dondition yields :
Uy =0,  F(h"—40) = Fulh + 4D
vhere h* is the coordinate of the partition, -
If the reflection is from. a maung pa;'tiﬂan
U= U N, lﬁ;&(*)—ﬁ(f)
JLEV — D — Fa( + 4] = [ (k= 4D = Dah o+ 4] 3.6)

where the index 3 ds
b o the par s of the medium behind
partition, a 1_.: the -n_-A of the pqtt;tim, and u is its velooity.

Let us cons $h4 refleotion of'a :

R : otd non-statd

i‘::uu: m:tuw-y partition, Without limiting the gmi'?ku:"é:n
af9ume the incident wave reaches the pertition on that s;ct.lon
ww*ﬁ;:h:rvhera it is stationary (Fig. 2). In reglon 4 all the
Paransters :r constant. Then they will also be constant in regica 5
o dohr-izd byt(h; zpnrﬁ.) Tﬁ“ in reglon 5 is w,%0, and the pru.u,.,'
b 2)e velocity of the frlat of the reflected

Komp(@—u) =BTE 37

The boundary of:region:.5 is the characteristic a
- Agmeonst . )
vhich s dravn fron the point mpmmiee
the line of the fr
;e{ﬁ::dl t::v;.:::-']t:: u“ths .;:lt ?o\ndn region 4. . The :‘:r:fctmlﬂc
e of region 8 and
of the reflected wave. The equation of“thu cm.izﬁ:ﬁzﬂszh‘ fromt

SR Agmconsk Y.
Both .ot ’

in region 5 and in region 7 we have ?; (h+&21.).=p02/2:
The boundary condition on the front of the nv‘;fia

205(4 + Ag) = py— Agiy = p) -4.-;. z.‘h"lt (3.8)

Considering that in the incident.vave the pressure and velocity
of the particles are determined by (2.14), ve obtain the differential
equation for the motion of the front i .

__,.' a, : »
. = Be Y @9
Here . . .
=2y pad (4 + ) = B A4 Bl p= (-1

2y, BiAL_ Bx

Ay
”m a A,
T it Lo il A

The sol{xtion of the ,eq\mtic-m is

X~ ,4,;).;.% (h— AtyRes £ const (3.10)

Thus, the line of the front of the reflected wave represents a
sacond~ardexr curve. The function Fl»(h -Azt) in region 7 is determined
from the relation

2F, (h — A = st Adls =
. “ gy o\ - B Bi) ARK
ot at [ o)+ B

which is satisfied on the now known 1ine of the front of the reflected

wave.

The limit of region 7 'is the characteristic

h 4 Agt = const

which is drawn from the partition and intersects the line of
the wave front, In segion 8 betuween this characteristic and the parti-
tion, the function (h -Agt) will be the sams as in region 7. The
function (htagt) Is determined from the condition that u=0 on
the partition. The solution in the succeeding reglons (Fig. 2) 1s
obtained in a similar manner, with simultaneous Jetermination of the
line of the fromt. . .

We assume that a certain instant of time the pressure on the
partition in the reflectal wave has dropped to a value p*, starting
with which it is necessary to go to the second section of the approxi-

mation of the igentropic curve.

0a the 1ine p (h,t)s p* (dotted line), which is ‘not a charac-
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teristic, all the pirameters are khoun, and therefcrs the flow behind
this line. in the rsglons bounded by tha corresponding characteristics,
is fully determined, If, as in the examples conaidered sbove, the
functions F, are linear, then ths 1ins p=p* will be broken, and
vill consist“of straight-line segments (shown dotted in Fig. 2). The
flow in regions 10 and 11 is dotermined starting with the conditions on
the lines pxp¥, The flow in region 12 is deterained starting with the
conditions on the cheracteristic and on the partition, while in region
L, 1t i deterained from the conditions on the characteristic and on
the front, in region 13 it is determined from the conditions on the

two characteristios. The further flow is built up in an
analogous manner,

The authors are grateful to L.I. Sedov and K.P. Stanyukovich
for attention and interest in this investigation.

Received 9 September 1958,
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solutions.

Decalerction of a Supersonic Flow in “Hnd Tunnel Diffusers

Izvestiys Aindemii Houk SSR, Ot~ N. N. Shirokov
deleniye Tekhnicheskikh Nauk,

liekhanlka i pesninostroyeniye, [News

of the Academy of Sciences USSR, Dep-
artment of Technical Sciences, Mechouics
and Machine luilding], No 2, Mar-Apr 1953,
Moscow,pages 19-24.

Ve report in this paper the results of an investigation of the
proces: ol deceleration of supersonic flow in the converging porticn
of diffuser channels of wind tunnels. Criteria are detormined for the
maxiounm possible deceleration of the flow to the narrow sectinn of the
diffuser, which will be called henceforth the throat. The effect of
the Reynclds number on the characteristics of the diffuser is investi~
gated. Based on the experimental data, an approximate procedure is
proposed for the caleulation, making it possible tc determine the
effectiveness of a diffuser channel of a given geometry.

An experimental verification of the computation procedure is
made for differant Mach numbers.

A characteristic featuwre of the published remults of research
devoted to the protlen of deceleration of superscnic flow in wind-
tunnel diffusers is the sbsence of any methcd whatever for tne pre-
liminary salculation of the ccefficient of presswure restoration,
with the sxeception of flow calculation based on an ideal liquid, the
results of which, as a rule, are quite far from the experimental data
cbtained. This is evidence that the prcblem cf preliminary calculation
of the preasure recovery coefficient depends essentially on a knowledge
of the laws of the influence ci' viscceity on the dsceleration procass.

Ths process of deceleration of sugersonic flow in a diffuser
can ©e breken up into twe stages -- the reduction in the
supsrsonic speed in front of the blocking shockin tne converging
portion of the channel, and the deceleration in the blocking jump
itself and in the chennel behind it. In investigatiocns of the adjust-
eble diffusers of wind tunnels there is alwsys a clearly pronounced
maximum in the relation 6=f- (F), where6is the recovery coefficient
of total presaure, and F is the relative area of the diffuser throat,
i.e., beyond a certain value of the throat area, further de~-
celeration of the flow in the converging channel does not lead to
an increase in O, but, to the contrary, it leads to a sharp decrease
in the pressure recovery coefficient. Various aubhors have ex-
plained the charaoter of the curve G=f {¥) by the fact that as ths
velocity in the throat is decreased, the losses in the blocking shock
decreaee more slowly than the increase in loss in the flow behind the

27
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L shock. Howover, experimental data do not confirm this
bhlﬁzﬂfhzgsis. Among the’w);g;am still unsolved conceruing_ths
deceleration process are two principal ones — what determines the
maximum possible deceleration of flow in the converging channel, i.e.,
¥4, and what determines the meximum in the relation G=f (F), d.e.,
t%’no timua geometry of the diffuser. The present paper is devoted
to a clarification of thass problems.

Deseription of the experimental setup. The investigat-:}ons were
carried out in expsrimental setup (Fig. 1) consisting of receiver 1,
in which a regulating valve 2 was used to maintain a given pressure,
which is registered with a standard manometer 3. The air for the
experimzent vas teken from a bank, of high pressure air flasks. Conn-
ected to ths receiver were interchangsable flat nozzles 4. The inves-
tigated diffuser channel were connected to the nozzles. These consisted
of stationary sidewalls 5 ard movable eyelids 6, the x_xumbfr
and shapes of which could be varied from experiment to axpermen;anvex;
a wide range. The cross sections of the diffuser channgl were ¢ tngt;..
by means of spscial screws 7 and the accuracy of the dlsplacemen‘ of
the eyelids was ¥ 0.1 mn oneachside, and was registered with indica-
tors 8. A ncn-adjustable subsonic diffuser 9 wi,tt} a thr?ttlf 10 on
its outlet was then attached to the movable syelids. During the time
of the expsriments, a measurement was made of the pressure in thc? re- N
ceiver, using manometer 3, while the distribution of‘tha static ,rt?gsu.e
along the symmetry axis of the latter walls and cf ths movj.n_g eyelids
was measured with mercury differsntial manometers 1l. The fields were
frarex traversed by fittings for total and static pressure in two
mutually-perpendicular directicns, 12, at fized time intervals along
the length of the diffuser.

Tt was possible to observe and photograph the flouAthrm.xgh an
IAB-451 instrumsnt and to photograph the process with motion picture
camera SKS-1, The principal investlgations were carried out at flou
velocities corresponding toM=3.0.

Results of thes expsriment and their analysis. Fig. 2 shous the
distribution of the sta}t(.ipz pressure along the axis of the sidewall of
the diffuser at a minimum valus of throat area for a given‘cbannsl
geometry, along with the . . shadow photograph corresponding to this
distribution. Judging from the shadow pattern, the reflection of the
jumps from the walls occurs even in the suberitical region, where the
Influence of the viscosity does not go beyond the limits of the bound-
ary limit.® The sams figurea shows the pressuwrs distribution cal-
culated for & flow of en ideel 1liquid in the same channel, with a
correction introduced for the thickness of the volume displacemsnt.

* The results of the investigation of the interaction between
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Lot us estimate the calculuted flow pattern from the point of
view of the eritical ratio of the presswre in the shock waves. The
valus of the relative prassurs in the shock,waves when the letter are
reflected from the walls and when they.intérsect the sidewalls are
shewn in Flg, 3, which also shows the curve of the critical pressure
ratio. It is seen that in the investigated channel tue pressure ratio
in the shocks at a minimum throat area does not reach critical valus
and consequently the curve of the critical presswre ratios for this

case is not & criterion capable of determining ths maximum pcssible
braking of the flow,

Lst us consider tha changs of the velocity field in the field
of the diffuser as the throat area is reduced (Fig. 4), and the change
in the velocity field along the length of the diffuser for a minimum
threat (Fig. 5). It follows from the examination that as the throat
is reduced the velocity profile beiween the etationary lateral walls
becomss substantially less filled, and approaches a detachment
profile. The velscity profile between tas movable eyelids is
alsoc defcrmed, but much leas. The deformation of the profiles occurs
principally on the finite portion of the converging part of the diffuser.
After tre suwing of the stream in the throat, thers occurs in the di-
varging channel of the diffuser a f£illing of the velocity profile on
bsth wells., It follows therefors that the weakest place in the chunnel,
from the poiat of view of =¥ z closeness to detachment, is ths
valoeity profile on the lateral wall in the throat of the diffuser.
It was shown in reference/l/ that upon detachment of & stream moving
with 8 positive pressure gradient, the criterion that characterizes the
state of the boundary layer, namely

= 2’ 3

o W with respect tu
where p'x is the first deréative of the pressurs the length
kaaxg i6 a given section of the boundary layer, z is the chsracteristic
dizensicn of the. boundary lsyer, ?,is the density, and w is the velo~
city of flow oan the N 1imit of the boundary layer, depends
1li%tle on the Mach number (in the investigated rangs) and, when calou-
lated in accordance with the aercdynamic volums displacemsnt &%, has
an approximate value of 0.014 or 0,015,

A calculation of the valuag oi‘f in owr experiments shows
that as the throat ares is decreassd, the valus of f increases and
reaches a maximum valus at Fpin, approaching in sbsolute

the boundary layer and the shocks and the determination of the curve

of eritical pressure ratio in shock waves were reperted in a paper by
G. I. Patrov at the session of the Department of Technical Sciences
of the Academy of Sciences U S SR in June 1958,
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magnitude the critical vaiwe $x (Fig. 6). In ow exporiments, after
messuting the veloclty field,g.it is imposaible to fix directly the
detachment of the stream, i.e., to obtain 5‘—,—. §, since the detachment
of the stream in the throat waoms disturbs the auperaonig flow in the
converging partion of the diffuser channel and partielly in the nozzle.

To confirm the foregoing premise conceraing the detachment from
the lateral walls, we mmix took a high speed motion picture of the
shadow pattern of the flow in the region of the diffuser throat. The
pictures were taken at 4,000 irames per second, Fig. 7 shcus .rmmas
of the motion picture film, fixing the flow at the instant of detach-
ment.,

Pnctograph 1 shows the normal flow pattern prior t:? the detachment
& supersonic flow with obligqus shock waves in the converging portion,
turning of the flow in the throat of the diffuser, and the Eoc?‘lex-a'hion
of the flow in the diverging portion of the diffuser char.mi.» .lsu‘ fronm
left to right)., Photographs 3 to 6 show in the throat of the difzus?r
on the sidewall the formatlon of the detachment zons (dark spct , which
moves against the flou (photos 9 -- 11, 13, 16).

Photographs 11, 13, and 16 show clearly that the detachment zone

follows the produced Shock wave, changing its shape as it moves towards
the converging channel, During the motion of this shock, supersonic flow
is retained in the throat of the @iffuser and in the diverging porticz?
of the channel. Photographs 18 and 20 show the formation and the motion
of the gecond shock wave, which differs in shape from the first one,
since the velocities in the converging channel have been reduced after
the passage of the first shock wave. This is followed b}; the formation
of new compression waves, photographs 23, 24, and 27 ané finally, the
velocity of scund is established in the threat, photograph 32.

A1l this complicated system of shock waves stops moving after
it reaches the corresponding section in ths nozzle, and a subsonlc
Flow is established in the converging partion, photograph 37.

Tt should be noted that during the entire time of the separaton
process, approximately 0,01 secords, suparsonic flow is retained’in
the diverging channel, with a corresponding blocking shock.

The results of this experiment give direct confirmation of _the
faet that the maximum possible retardation of the wiwmx flow in the
converging channel is determined byS, on the lateral wall.

Measurement of at Fpjp was carzied out in additbn in channels

with different lengths of converging portion and with differant bound-
ary layers at the inlet to the diffuser. The resulis of the measure-

»
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gre shown in Fig. 8 and confirm the assumption of wesk dep of
%* on the Mach number (fn the investigated range).

The usual procedure of investigation of diffuser channels
provides for & reduction in the pressure in the receiver after ths
starting of the tube and the establishment of the necessary through
sections in the diffuser. Thus, the determination of the relationships
O =f (F) ocows at variable R numbers. To eliminate the influence of ths
variation in the R number, the characteristic &=1 (F) vas plotted at
a constant pressure in the receiver, and a throttle at the outlet from
the diffuser was used for the determination of &, It was found in
these investigations that the descending branches in the char-
acteristicGf (F) ars absent (Fig, 9). What is the same, at different
pressures pp in the receiver for a channel of given geometry.

Approximate calculation of the characteristic 6=f (F). Based
on the data of the preceding sections, we can calculate approximately
the effectiveness of the diffuser channel with an accuracy sufficient
for practical purposes. The calculation is broken up _into two stages:
the first is the determination of the limiting cwrve Fiyn=f (py),
which depends on the Mach number of the nozzle and on the thickness
of the boundary layer, cn the shape and dimensions of the converging
channel., The second stage is the determination of Fpj, corresponding
to the maximum preasure recovery at a given geometry of diverglag

channel.

In the determination of Xit is necessary to know the change
in the throat of M, p'y,and g“; this can be obtained by calculating
the flow in the converg{ng channel with allowance for the boundary
layer.

To calculate g* it is possible to use the wel® known procedures
of calculations of turbulent boundary layer, specifying merely the
change in the parameter H=&%/€**, where §** is the thickness of
the momentum loss, characteristic of the braking process. The change
in the parameter H along the length of the converging channel at
rmin (Fig. 10) shows that the principal deformation of the profile
occurs in the throat region. A further small decrease in the throat
leads to the formation of a detachment profile, i.e., the parameter
H on curve 10 should increass almost vertically.

Assuming that a detachmsnt profile occurs on the throat on ths lateral
wall and taking H (x) as shown in Fig. 10, we can calculate the
phange in relative to F. The throat area, at which S‘ =_r % Will be

F minimum for a given value. of P+

The best shape of the * aiverging channel was shown experi-
mentally to the cylindrical, For this case it is easy to determine
the total-pressure losses, after determining by previous calculation

3L
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al channel,

f the flow at the inlet to & cylindric.
ﬁvﬁrg“ﬁ;ﬁ;ﬁaomy the equations of conservation of flow, energy,
and momentum, without allowance for friction forces. Figure Captions

alcu-
To ver: the approximate procedure of cAlc\_:latian, we a
lated and tesitalz axperimentally channels for M=2.5, 3.0, aﬁ Bg;m 7
The calculation and e:@rimntal results are shown in Figith ; ooy » %\
which it follows that Fpyn is deternined by computation ! :
3 ~- 5%, while the accuracy of 6;Ax reaches 6%.

\.

Received 21 November 1958

BIBLIOGRAPEY

f the Boun~

- vich G. M. Calculation of the Detachment o:

- md;ryz.n;on'cr. Isy. AN SSSR, OTE (News of the Acadmey of Sciences
USSR, Dept. of Tech. Sciences) mo 12, 1954.

Fig., 2. Flow pattern in converging channel; — — — calculation
flow of an ideal liquid, (-~ -- experiment,
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v

hannel with
Fig. 3. Comparison of the flow in converging c
curve a of critical pressure ratio; the points b and ¢ correspond to

F=p2/p) and T=p,/p3.

Fig. 5. C‘mnga in tho valcca.ty profile along the length of the
channel et Fpin (\ =1.0 corresponde to the section of tba diffuser
throat).

Fig. 4. Change in velocity profile in the throat with changing
throat area.

Tig. 6. Vanatinn of al ng the sidewall in the throat with
changing F. . )

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/03/14 : CIA-RDP81-01043R004200140002-4



Declassified in Part - Sanitized Co ved for Release CIA-RDP81-01043R004200140002-4

aDI[IA 18

flow in diffuser.

Fig. 8. Valuss of Sobtainad in various channels &t Fpine
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f haracteristic
Fig. 9. Influence of the Reynolds number R on the ¢ r
6=t (F%% 19-- F . =f (), 2 —0=f (F) for R=const, Po=4.55
atmos, 3 — o=l Y at R=var, Py=5 to 2.42 atmos.
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Shock Tuhes for Measuring Drag Coefficients of Bodies
in Free Flight

Izves Aladendi Neuk SSR, Obw Yu. Ao Dunayev

/\/ . \ it e [Hevs G. I, Mishin

of the Acedsmy enced UBSR,.Deps .

%nﬂ ariment of Technical Scisnces, Mechanics -
/ - ;oo Machine Hdlding], No. 2, Mar-Apr 1959,
77 IMoscow, peges 188-190. : .

7

. A brief desoription is given of & shock’ . tubs 4 meters
’; long with fowr stations far plotting the spmce~time variation of

flyingbodies, The setup mukes it possidbla to measure the 14ref
coefficents and simultanecusly photograph the spectra of flow of
various gases over high-speed axially-zyametrical bodies.

experimental values. : . 1. An investigation of the flight of bodles

wder condition of maximum spproach to netural can be sarried out in
ballistic (mbock) instalistious/l -~ 4/. In a alosed polygon, it is
posaible to areate any desired atmospberic comditions and to vary
irdependently the similerity oriteria such as the Mech numbers and
tha Reynolds numbers aver the widsst possible range.

a 25

Fig. 10, Dependence of H=£ (M) for power-law profiles; dotted —-

The use of various gases in & shock tube makes it possible to
astablish the rols of aero~physical perameters h¥ /XT — the ratio
of the characteristic temperature of ths gas to the impect tempera-
ture end L/uT-- the ratlo of the characteristic dimensicn of the
body to the width of the relaxation region (u is the gus velcolty,
T'the ralaxation time), Zuring the dynamdcs of the flight, Mg,
shows an ovarall view and Fig. 2 shows the diagram of a shock tube
for the measurement of reaistance coefficients.

High initial velocities of the hodies were accomplished by
shooting from & rifle one . of 14.5 mm culiber, using large
. batches of spscial pouders and a carresponding fastening of the
/53 s 4 butt. To soften the blow during the shooting, the rifle was placed
on slides, permitting it to recoil, The sound of the ahot was .
Fig. 11, Comparison of the results of calculations (solid lines) . i reduced by placing the bubt in a vacuum tank 2 through a rubber
4th the experimentdl data (dotted). seal, making it possible for the butt to move horizontally., The
with ‘tank was evacuated by meenw: of forevacunm pusp 3 of type VN-1 to
a pressure on the arder of 1 mn meroury, controlled by means of

manometexr 4.

Steel, duraluminum, magnesium and bakelite balla 9.46 om
vere shot with the gun. The balls were - . pressed in wads
made of delta wood. At small velocitles, to facilitate the
removal of the balis from the wads, the latter were cut along the
diametral plane, -

»
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The outlst from the vacuwa tank and the entrance into the shock
tube wers covered with ccllopbane filams 0,04 mm thick; such diaphragms
produce no dsformation even in the case of magnesiunm balls.

The shocx tuos ccnsisted of {'our sections of
& total length of 4 meters. The internal diemeter of the tube was
300 mm, thus guarantesing absence of ths influsnce of the walls on
the {light of the bodies.

Three sections had two rectangular windows each, measuring
720 x 100 am, located diametrically opposite, and two round flanges
each, 150 am in diameter, to connect the puamp, the manometer, ths
vacuuz meter, and the gas inlet.

Befure entaring the polygen, the bedy passed tarough a shed
shicld, an angle sector 6, and vacuum chamber 7, serva.ng for ra,xid
rsmcval of the air from tne sur{acs of the tody during shooting in
varicus gases.

Before the sxporimsnt, the tube was evacuated by forevacuum
pump VN-1, 8, to a precswre of approximately 1072 mn mercwry. The
preasure was registored with a thermocouple vacuwa meter 9. The
gas was then let out of flask 10, and the pressure and tempera-
ture of Lhe gas were measured by manometer 11 and thsrmometer 12,
located near the trajectary.

The rifle was triggered by relay 26, using a signal received
from the gun~control panel 24.

2. The valuss of the drag coefficients were calculated
after meusurement made with instantansous photographs of the
positions of the ball elong the trajectory, at known specified time
intervals. Such a method of plotting the space-time dependence of
the £light of the ball was adopted by us because it is easier to
obtain by electronic means calibrated time intervals, than to measure
the time when a body passes the fields of light beams with the same
accuracy.

Simultaneous photography of the sphere and of the coardinate
rule vere made with tymmsoiiked light transmitted through plexiglas
rectanguler windows 13, by means of cameras "Kiev", 1l4. To obtain
clear photographs of a body moving with a velccity greater than
100 meters per second, it is necessary to have exposures on the
order of 0.5 x 1070 geconds, Mechanical shutters cannot produce
such short exposures, amd therefore, prior to the firing, the lenses
of the cameras were opsned by means of relay 25, and the exposurs
time was datermined Ememxkiwe by the length of the light flash.

%)

Dluninating apparatus 15 bad a aystem of mirrors 16 and
condenser lenses 17, insuring 1llumination of the entire field of
sach station from a single source 18,

h‘mp&nnt cwimu ruh"s vith millimeter divisions wers
mounted inside the tube below the. . flight trajectary. The setting

- of the rules was checked by means of a 1-1/2 meter beam compass.

The ‘cameras were plloed relativa to the trajectary in such a
way, that thair fields of view overlapped. In the case of deviation
of the ball from the mean trajectory,

the photograph of its position relative to the rule was
seen displaced. This displacement is small near the axis of the lens.
The position of a ball that deflects away from the axis of the lens
is ncordad simultaneously by two cameras, making it possidle to de-
‘Sermine accurately its exact coordinates by simplé computations.
Carrection for the taper of ths rifle could also be made by measuring

'tho deviation of the ball at the exit from the polygon.

. It must be noted that Ln nany experimnts the deviation uas
less than 1 cm, and g y ths on was y only
in rare cases.

At the first station, which had a round field maxkim
of 150 mm diamster, the procedwre was not only to measurs the coar-
dinate, but also to photograph the shadou spsctrua of flow around
the ball. 4 condenser lens and a point-source spark illuminator of
ths type "cylinder-electrode® 19 mroduced a parallsl beam of light,
which was projected on the : ., ground surface of a plane-
parallel plate, which was provided with a uruogl coardinate ref-
erénce., The scals of the photographs was deterained by first
photographing a millimeter grid. The ts vere ied out
directly on the negatives using the MIR-12 measwring
microscope, which has an acouracy of £0.3 ma, -

The most sultable circuit for spark production was one em—

. ploying a discharge of a capacitor, first charged
to L — 16. kv, through a pulsed hydrogen thyratron T6I-1-325/16,
Suwch a cirouwlt produces a ainimua spread in time between the mssage
of the triggering pulse and the instant of appsarance of the spark
since the process of initiation is lacking, The pulsed’ hydrogen
thyratron pernits exact control, realissd by applying a low positive
voltage to the grid (the time spread _%n operation, based on the rated
data, is not ix worse than 0,04 x 1070 seconds, even with only 6 kv
on the anods), . .

To improve the breakdown conditions, pointed elsctrodes were )

1SS
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used,

PERSEENN . c -

In view of the small power of the spark; the glow of the plasma

vas rapidly damped by the ntrrounding air, and the effect of afterglow
was 1inited kwoxax by the finite sensitivity of the film, .

-2 3,. A series of pulses, arriving in ssquence to the spark devices
at . exaotly-known time intervals, was generated by & multi-
ohannel electronic synbhronizer 22, the block diagram of which is
shown in Fig, 3. The signal b, applied to photorelay 23 when the
bullet crossed the light beam, was applied to a starting trigger o,
vhich controlled the impact-excitation generator d.

. -vas .

After the trigger turned, the generatar started operating
with the same initial phase, with constant amplitude and frequsncy.
In the next stage, e, the sinusoidal voltags was converted into brief,
almost rectanguler- pulsea. These pulses pass then through a frequenay
divider £ with a division coefficient 32, from which they were applied
to univibrator g, which formed broad pulses, equal in duration to the
period of the master gensrator, -

The pulse from the univibrator separated, in a coinocidence
ciroult, one of the pulses that come directly from the shaping stage
e, thereby eliminating the "floating® of the output aignals with
time)-through the use of a binary-type divider with'a large division
coefficient, '

“oalibrated .

The pulses from the coincidence circuit passed to a distributing
block, which gerved four spark devices. After the operation of the last
of the stages of the distributing block, the starting trigger returned
to its initial.position and the oacillations of the generatar were
quenched. - For the spark devices to operate with a minimum spread in
time, ‘pulses with an amplitude-of 350 volts and a cwrrent of 0.5 amp
were fed from the output:stages of the synchronizer to the grids
of the hydrogen thyratrons.

--i" Thé 'generator frequency vas controlled by a quarts heterodyne
calibratar -type VS-221T. The relative scotwracy of the measurement
of the frequency was 0,1%, ’

" 'The-élsctrofilc: ciroult ensured the appearance of light flashes
at known time intervals, differing from each other by tenths of & -
oicrossoond, | - :

4. The drag coefficient of & ball flying in a gas, by
definition, equals .

C, = Bme

T T

vha:";'. 1 18 the wess of the ball, a the deceleration, @ ths gas
density, M tha ball velocity, and d the ball dismeter,

It is interesting to note that.the tims does not enter directly
imo the expression far C,, since Y~ tL and a ~ t2,

Kaowing the pressure of the gas p and its temperature T in the
tube, it is possible to deteriilne.the density from ths equation of state

p =0.3394 p, %

Here S’a is the gas density at 0°C and a pressure of 760 mm mer-
cury.

The mass of the ball was determined by weighing on an analytic ba=
lance, and the diameter was meesured with & micrometer.

. The magnitudes of the deceleratiun and of the velocity were deter-
mined from the dependence of the ball. coordinate on the time of £light
either by the method of averages or by the method’ of lesst squares. Tae
oumber M is found efter celcwlating the velocity of sound,with allowance
for the temperature correction or through the use of available tebular
values of the veloelty of sound. Fig. I shows the results of the measu~
rement of Cx in air at atmospheric pregsure, using megnesium balls for
Maebsnwnbers from 2.4 o 6.1 and Reynolds numbers from 5.0 x 10° to 1.0
% 10°. The Reynolds number varied in proportion to the velocity.

The average deviation of the measwred valuss from the mean
curve amounts in this case approximately to =1%,

Whan the investigation was performed in a gas of high mole;
cular weight, such as Freon, ths mean error rarely exceeded 0.5%.

Basedoon the &bove, it can be aonoluded that the
shock -tubs is & convenient method for measuring the flight of bodies
with supersonic velocities.

In concluslon, I express my gratitude to 4.4, Sokolov, who
bas rendered great hslp in the wiring and operation of ths apparatus.
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THFORMATION O THE STATUS OF SOVIET RESEARCH IN HYPERSONICS

Izvestiya Akademii Neuk SSSR, M. S, Solomonov

Otdeleniye Tekhnicheskikh Hauk

[Fews of the Academy of Sciences USSR,
Department of Technical ciencea7,

No 9, Sephtember 1958, Moscow,

Pages 157-159

f he following material is an extract translation
of an erticle entitled "June General Meeting of
the Department of Technical Sciencea of the Academy
of Sciences USSR,"

On 16-17 June 1658, under the chairmanship of Acedemician

A. A. Blagonravovy, a general se¢esion of the Department of Techaical
Sciences was held, at which tvo sclentific reports of cousidereble
significance were examined. The first report, by Correspcnding
Member of the Academy G, I. Petrov, was devoted to the problem of
the motion of a real gas st velocities considersbly exceeding that
of sound.

The repid development of aeronautical and rocket techmology hse
presented sercdynamic science with meny nev and difficult problems
and resulted in increased raquirements for accuracy of experimentally
chtalned data. For the snalysis end design of vehiclés flying through

the e at higa aupl ic speeds, and elsc for the design of

pover plents, the study of the motion of a ges in close proximity
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to the surface skin, where the effects of viscosity and heat conduc~

tivity become evident, is of great importance. This matter arises
becauge the boundary leyer in supersonic flow can significantly
change the nmeture of the shock waves geherated by the body, and this
is especlally important when flyiog at high velocities.

A basic guestion, frequently determining the "to be or not to

be" of any vehicle, is the matter of protecticn from serodynamic

neating. The 4{nitial expermem;al investigations of the velocity

Aistrivution in 2 supersonic boundary layer, conducted with "micro-

tubcs" erd busically by quentitative optical methods, showed thet
the velocity distributicn in both & laminar snd & turbulent boundary

layer, for velocities at the ‘boundary exceeding thet of sound, is

similar to that in a subsonic boundary layex. The velocity distri-

bution in a turbulent layer is well described by exponential laws.

In supersonic flow, in re ions cheracterized by a sharp longi-~
tudinal variastion in the flow parameters (the base of the shock wave,
flow around an vbtuse angle), the fundamental propositions of boundary

layer theory fail. In these regions it is impossible to neglect the
pressure change across the layer and the possibility of transmitting
the effect of disturbances forvard againet the flov. Consequently,
the equaticns for the boundary layer, equations of & parsbolic type,
cannot describe the phenomena taking place here. In theae regions it

is possible to apply the besic equations for a non-viscous gas, but

under conditions of mixed vortex flow.

15
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Tae study of the interaction of strong pressure Jumps wita the
houndery layer hes permitted the establishment of the general mechenism
of the onset of this special kind of "erisis" wherein, at the time of
the attainment of & cri‘njjc\: 8l ratio of the pressure behind the jump
to the pressure before the jump, the shock wave changes in pature so
thet an edditional jump ie formed; or, in the case of emission into
the Tluid with back pressure, the pressurz jump 1s transferred inte
a region of lover Msch mumber, so that the ratio of the pressures
does not excesd the critiesl. This eritical ratio for a turbulent
voundsry layer is a fumction only of the Mach number of the approach~
ing flow and has teen determined experimentally over a wide range of
Reynolds nuvbers for Mech mumbers from 1.5 - 6.

The diacevery of this effect and the obtained universal relation-
ship for the critical pressure ratio as & function of Mach nuxber has
permitted the clarification snd the predicting of a series of other
sffects conmected with flows in @iffusors, sltitude chambers, around
airfoiie, arcund braking flaps and otker cases of practical importence.
This has also permitted the development of & method <;f calculating

the thrust of & nozzle in the uncslculated regime.

Vnen studying the deceleration of flow in diffusors and the exhauvat

of nozzles, of fundementel importance is the study of the laws of
motion of a "closlng® pressure jump, i.e., a jump which can be dis-

placed or deformed by the action of & back pressure, Zhe relstion-

Lt
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ships which bave been cbtained permit the determination of the
statically stable positions of a closing jump and the calculation
of the losses in ducts.

Dur.ing experiments on the maximum deceleration of a supersonic
flow in converging channels by F. N, Shirokov, a new phenomenon was
detected: the formation of & new pressure jump on the side walls
of the channel due to the breaking away of the boundsry layer.
This determines the maximum possible increess of pressure as a
funetion of the Mach and Reynolds numbers and of the shape of the
channel.

AB the author showed, the numerous semi-empirical methods of
calculating the coefficients of heat transfer and friction with
supersonle flow in the turbulent boundary leyer are based upon the
application of integral relationsnips and the establisbment of a
connection between the local characteristice of the boundary layer
and the local coefficients of heat tremsfer end friction. These
relationships, obtained from Ia finite mumber of experiments at low
speeds, heve been broadly extrepolated over & wide range of Mach
numbers and ratios between the wall temperature and the staguation

temperature, The results of caleulations based upon these metheds
differ videly amongst each other as the Mach number increases.

For an experimentel investigation of heat transfer and friction
4n turbulent supersonic flow, the working out and development of an

extremely precise methodology for the direct measurement of the

13
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local coefficients of heat trunsfer and friction is required. The
experiments which have been carried out have permitted the =2ctadplish-

ment of reliable criteria for the physical relationsbir. acd ewe.

2

s comparison of the various methods of caleulation. i “he siinting

methods of caleculating; the best agreement with exprmrime = . e a

wide range of experimentsl conditions is glven by & setrod dewloped

by V. M. Iyevlev, which takes into account the mole~vuer di, latia
of the gas.

During en investigation of the flow and heat transfer on a blunt
nose on a body flying at a high supersonic velocity, there was
established the law of the constancy of the relative aistribution
of pressure as the Mach number is varied over a wide range, and there
was also determined the coefficients of heat transfer cn bith rigidly
supported and free-floating bodies. Rather high coefficients of heet
trensfer on free-fioating models vere obtained by virtue of the
roughness of the surface at the time of its disintegration.

The methods which have been developed, together with experiments
which have slresdy been carried out, have permitted the establish-
ment of the existence of anomalies in the boundary layer structure
during evsporation on the wall or during the injection of another
gas through a porous wall, and heve further permitted an evalustion

of [The effect of/ a reduction in the thermal flov which is importent
when developing methcds for .protecting structures from thermal effects

at very great flight velocities.
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tion of
The euthor of the report pointed out that the juvestigs’

i pulent boundary
the transition of the lamiver ‘boundery layer into a turl
. a e only partiel
r {s still only in a rudimentary state, and ve have only D
laye

{nformation on the effect of the various factors on the Reynolds
number of the transition. Bub evidently, as the Mach number increases
veyond 5, with s relative reduction in the wall temperts#jure the :‘rm;ct
sition will be delsyed. Special {mportance cun e agseribed to the

verse tran-
that with 2 kigh Llongitudinul velocity gradient, the r€
J r. This vas
gition can take place, namely from turbulent jnto laminax
1ayer when investigating

detected in experiments with the boundary

the losses in the nozzle of an cngine.

Flow Around & Conic Body During Motion of a Gas With
High Supersonic Speed

izvestiya Akademii Nauk SSR, Ot- A. L. Gonor
deleniye Tekhnicheskikh Neuk,

Hekhenike 1 :@shinostroyeniye, [News

of the Academy oi Sciences USSR, Dep-’

ertment of Technical Sciences, Mechenic

end Mechine Building], No. 1, Jan-Feb 1959,

Moscow, pages i-40.

1., Dzscription of the genmeral meth We shall consider the
£low around 2 conicel body by & supersonic Zas stream with the associc-
ted shock wave. ‘Tae surface of the body iz ;iven by the equation
P(x/z, y/z) = O.

To derlve the equations of motion we choose an orthogonal sys-
tem of coordinctes, in which the following holds: a) the first coordi-
nate famlly is the spheres 12 ¢ ¥ +y2+ :2; ) the surface of the vo~-
dy coincides with one of the cdordinate surfcces of the first family.
Such a system can e determined if the second femily is taken to be
the surfaces 7(x/z, y/z, & ) = 0, obtained by introducing in the first
equation the parameter & , and if the third family is taken +o be the
conical surfaces £ (x/z, y/z, # ) = 0, superimposed on the orthogonal
trajectories to the surfaces of this second family (Fig. 1). Consider-
ing thet the conic flow is self-similer with respect to the radius 1,
we obtain after several simple derivations from the geperel Lagrange se-
cond type equations [_1_7 the following system

0 o (In +1y),
= ur - Tw o
“ En

o [atrdy) | Q)
+ i (252 4+ 262 = 0

Tae first two equations are the projections of Euler's equa-
tions alo g the exes »r and &. The last three equations express the
sondition of concervation of energy, entropy, and mass of the parti-
2les, respectively. The functions Ay and ere the Lame coefficients,
;alculated on the surface of the unit sphere; w, v, and w denote respec-
tively the velocity projéctions'on the axis r, @, and ¢ ; v, £, and rd
are the pressure, density, and ratio of the specific heats. le convert
the system (1,1) to = new variable ¥= (6, ¢) , satisfying the following

51
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equation ere the grejeetisns
. LR .
Zh e

The surfece ¢ = const represents the current surface, and there~
fore the varicble ¢ plays e role analogous o +the usual stream function
for two-dimensional ond axially-symaetrical Z:oW, if all the notion is
considered oz 2 sphere of unit radius with the center at the vertex of K
the body (Fig. 2). Taking into account the connection between the de= . 1es in +
rivatives fo - Yoy, py=-0g /8y , we ovtein sor the changeover to the then th
changeover 10 the new variable the following »elations of the

ot oL _2
W0 %0 o Oy ¥

(sinar, -+ cosar, ) (sin a¥, 4 cos ad, )

P it 14 _ i

i Tarad 71 W_U—Ezu&T"'—L-.-
The system (L.1), after transformation, becomes ! sina o, -+ 00849,)

grad o] la~ae
w (g} o ~const g __
gt gt
L0 ,:.),, _ L op (1.2) i for
£
a p ud vt ud
7’;[(7~l);+ g ] o

L tn oy w0+ 2. s =0, e
e YL

We shell seei the solutions of the ecuntions subject tc the fol- _

fowing boundery conditions: Re=Ugt+3B+..., vyt t..., W=wts4...
Popotopt e, fmpeftbpt.... OOl ..

% — A =0, w0 (In4)y
_ 1. On the shock wave, the eguation of whose surface ve shall LA .Y ) o
denote by 9% (¢), the following relation should be satisfied A F[" Tt \n.]-:o,
. . o110 (pg Ay 04 03)] = — 222
Uno® =U,"s", 3 (10 (pe A1 104 0)] 224,

e[+ w=no)
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Here end below the Lame coefficionts ure caleculated for 8 = O
and depend on @ single variable @,

On the shock wave, in the case of #={ ¥, ve obtain from (1.5)
the following boundary conditions:
A8, . 2 .o
W = [H’w—-nv,“']' Yo =

. < . LA
P’ =g’ w0 po =p’[1+m]
here u§, VS; and Vg axe components of velocity of the incident stream,
determined from formulas (1.4) for % = @x. Integrating the first,
third, and fourth equations of the system (2.1) along the line g
const from the point M to the point N (Fig. 2), we find
°

ug = By (¢) sin [X Ardy + a@.)]
)

w=be@eos]\ drdeta®)], L =n(@) (CR)
)

The arbitrary functions L, d‘a.nd from conditions (2.2), are
equal to the following expressions

A@) = V@ + @V a@) = urclg'%:;
8o () = (1,”)? [1 + (T_—Z::T’-] (2.4

'The sign in front of the square root should be the sane os the
sign of w8'. The primes here and henceforth will denote that the cor-
responding parameters are calculated on the lines of intersections of
the surfece the shock wave with the surface of the streem #/=
const (the point N on Fig. 2), when ¢ = ¢ It is obvious that o unigue
mutusl relation cizists between the variables ¢ and ¢ and thot the

re best determined in the varisbles P and 2
fifth equation the system (2.1) after doterminesioa of ug and Wy,
admits of the fcllowing integral:

Pl A0y P0Gy @.3

@y o

Thic relation makes it possible to »epresent the ssconé equation
of the systea (2.1) in the integral form:

;
._(lnA,). Wt A oe g
Po—Pa = 77‘5'“#4% ay

To elimlnste the unknowvn function &' from under the intezwal,
we changeover to an integration varicole () asing the inner quality

(a,,". e

P dfy’ 25t
baite =3 = (%) = — T [t + =] @8

odbtained with the 2id of the last equation o the system (2.1) znd the
second condition of (2.2). Inserting the values of @ from (2.2) in-
to expression (2.6) under the integral sign, we find thet the pressure
et any point of the stream is determined from the formula
R LT.N Y SR N
o= pa’ —p" " "§’”’T—,-°f,° Ay de @7
. ®
Intesroting {2.5) elong the line 75’ = const, sterting with the
surface of the vody, we get
o
8= 22 | Ml g @8
¥
From this, putiting ff'= ¢ ; We get the equation of the surface of
& sheex wave &# (). After integration there appears in (2.8) en ar-
bitrary function ﬁ(wﬂ"( #) at 8y = 0, which should satisly, by virtue
of the touniery condition on the surface of the body, the following equa-
lity

vwoica adnits the following twe solutions:

1) Poliowing Ferri /3/, we assume that on the surface of the Do~
dy vt #Fo. 1 Yeguels a constant nurber, the value of which is de~
termined. in exch sg 'ic case,

2) Assume that SFY/P¢F ¢ In tais case ¢is found from the
implieit equation

oo
§A:‘f¢ = areg[ ] (2.9)
)

Aa analycls of the integral (2.8) shows that the function can be
considered congtant only when Eq. (2.5) has no solution, and in the op-
posite case the first solution lesds o negative values of &e.
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i bstitution we verify thw- (2.9) has no solution
da (2.7). sure on the surface of "ha I y‘¢< ©> and coasecuently ¢ is a constant, which is
3 tais equati ¢ et us iavesti ,’ found uniquely if the shock wave ic not dztoched {the front e i
oraidnes the sl e cecond Term In .7 personic). Actunlly #° is the ccordinate o the surface of
adjecent to the surface of the wind, and since this surface inte
the wave on the front edge (right or left), theny=1p (Fig. u). T_.et ve
study the flov coud the wing in grca‘ber excetitude by using the second
N terms of the series (1.5). The system (L. 2) and the boundary conditions
the -?ine of . i for the teriss index 1 are analogous to those considered in section
P U8} TiXg, Vo: : 2. As a result of a1l the derivations, which we now omit, we get
rczed along the j oo i sinatea 4
scalar pro \1». the \ u = —U s [1 < : ]mn(

—%h
Jeoss—2)
1) - Ut sin? 2 — o U/ M2,
- (3.3)
4 :hlxu;lgx[i

satistying
‘.a\= Io"' T,'n

b
b
¥

!

t
f
)
|
t
i
1

Tne susface of the shock wave is obtained from the exprecsion
(842G ) at #=¢. Let us consider the intersection of the suxface of
the wave with the planes z ¥ 1. Going to cartesian coordinates Ty
meens of fo: o5 (3.1), we find that in the first two approximations
z=reosbang,  y=romh = roUcsy o8 the intersection line is the streight line

oY=t
Y=oyt 1+ — — ](t-zglg.,)%
wstizut‘ng [E5D] o) ain T+ L %2 l)41‘sln
x{i V

Consequently, the surface of the cheelk wave consists of two plo-
nes and hos o idak ob x = 0. The flov lines on the surface of the
&s showa uwlztion, are straight lines thut converge towa
symmetry s ot on angle~& . We note that the solution obtained con-
tains, in the second approximation, a singularity of the source type
(#2 # &) at the Doint of the kink of the shoek wave (x =0, y 2 y*), It
must 52 aso that the kink ia the wave and the singularity ere due
4o the approiimate nature of the method and will not exist in the exact
solution (sec Section 4 on this). Ve have considered flow about one
surface of a trianguler wave. On the trailing surface at M—>%? there
is forzed a base vacuum /U/, and one can assume p = O, As 2 reswld of
suzn a flow model, we obtaln for the cosfficients Cx and Cy, referred
3o the erez of the wing in plan, the Tollowing expressions

2
L2 — g e[+ g=na))

5T
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Gu = it Y=y Sy
.7 N !{’ +F L[l +(Y—’W"i""]}'
€y =2sint = T
y 2.5"\»ﬂ-t(ﬁa{i+Y+L["+(y—1).|l'lﬂl'l]}
¢ thet the co
coefficieats I

il curves plotted
5 in tha’ dart, vhere the rarome~
2 < 1 and the theory no longer apolicable, The dac~
i the results of the linear theory, cbicined in refexenco /7/ .

242

a2

an

an

an o
o ltilip ST

~—
"

&
Fig. 5
Solution of the problem of flow cbout an ellipticel oone.
exemple is the flow about an ellipticel cone, the surface of
glven by the equation x2/a2z2 + y2/b2:2 -1 4 0, The cagde of 2
wos discussed in reference /8/. To plot the system of coor-
introduce, as indicated in Section 1, the parameter #. We
ain 2 fomily of surfaces

tgr =222yt ' (n=at/by (4.1)
% the region where ten~l & € <74, the surfaces &= const
voluwie outslde the body uniformly can be taeken as o second

irc family is found b, own the equetion Tor the
box es (4.1). In Zinal Sor:

OB 4 2222 2 [0 -n
tgrs = _/_%tv_w_ (~rmsesn) (4.2)

rification it is easy to check that the new cysten of
wes x, & f is orthogonal and that vaen n = 1 it goes into the

58

ordlasry cperical system., The coefficlents &1 and 4o can
bz calculated from formulas (4.1) and (4.2), using the fol-
lowing relatlon from vector analysis

Vad+ v+ 20 = Y VBE+ 0,5 + 07
After carrying the various calculations, we Tind

'y [ I
A= Usor @+ (1= ) 3] [1g26 560 8 — (4 — mpny 2o
2y, (g8 —nyYpecr0p(f—mud Y&
=g ;‘.q;(i?l—(?r;mﬂ) ﬁi“-g“»)'ﬁo“o FIgH{L = A —njyd=al <n) u.‘)

tgr¢ = [sect0 + (1 ~n) 4" (1826 — ny, A" 4.3)

48 cen be seen from formulas (4.3), a unlgue relationship
exists between yy = y/z and ¥ , and since yi1 18 a geometri-
cal coordinete in the plane z = 1, it 1s more convenient to
determine in terms of this quantity all the sought iunc-
tions, fle velocity components oI the undisturbed flow are
found from (1.4 )to equal to
o_ 1 cosat+sinay w=—U o8 tgho —sina. Mo
BT et e 1tg20, sect 8 —n(i —n) w)"
[8in @'sec?0, — cos @ (1 — n) g | (Lg° Uy — Ay,
(gt 0y sect 0, = (1 — mytgh0 - tg20, (1 —n) —nly* —n (1 —niuys) *

(4.4)

= U

02t

ig. Fig. 7
5
o

rigures aad 7 show plots ol the distributioan of
coeflicieat ol pressure Op over the sur.sace of ellinti-
zones at ¥ = o0 and « = 0.

On these figures

o a.b
s
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r abi #)p of the in=-
ti0a of the derivative [CH ; N
tesraén(é?g?sgigss that the ahicl{z :avzﬁenglgzgtzi: z;;zm :xéz;‘i
he v o of a/b # 0, has no kink In i
gé;aéz}x‘;ntly, éhe’ésiéxgularity that ocecurs whez} :af‘lige;ﬁ
angular ving is placed in & stream does not app o
the cases when the thickness of the wing 18 not .

In conclusion, the author expresses deep gratitude to
. Chernyy for great help with the worke.

Received 9 June 1958.
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Calculatlon of Axisymmetric Jet Nozzle
of Least Weight

Izvestiye Akademii Nauk SSR, Ot~ L. Ye. Sternin
deleniye Tekhnicheskikh Nauk

Hekhanike 1 Mashinostroyeniye, /News

of the Academy of Sciences USSR, Dep-

artment of Technical_Scilences, Mechanics

aznd Mechine Building/, ¥o 1, Jan-Feb

1959, i{oscow, pages 41-45,

The problem of the optimum contour of a jet nozzle
was solved only in the last few years. In 1950, 4. A. Hi-
kol'skly /1/ proposed, in solving the variatlional problem
of gas dynamics, to calculate the aercdynamic forces &ap=
plied to any surface, in terms of the perameters on the
characterlstic surfaces that bound this surface.

In 1955, G. Guderley and E., Hantech /2/ gave a so=
lution for the varlational problem in & nozzle of least
length with an angleentry. The authors of the work have
reduced this problem to & numerical integration of a sys=-
tem of ordinary differential equations of first osder.

An analogous problem was solved, with a much more
rigorous mathematical foundatlon, by Yu., D. Shmiglevskily
/3/. In this paper, unlike in reference /2/, an effective
method waa given for integrating the system of differen-

[ Wquations. In reference /3/ the investigatlon concer-
ned & nozzle with an angle entry and a rixed length and
dlameter of outlet ssction, The working fluid was a gas
with a constant adlabatic index,

The calculetions have shown that the minimum length
nozzle is not the bhest as regards weight characteristics.

It should be noted that in an exact statement of the
problem 1t is very difficult to solve the problem of the
naximum-thrust nozzle for a specified weight, since in this
case it is impossible to use the aforementioned principle,
expounded in reference /1/.
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| ral to assume that whell 1, Variational Problem. Let us turn to Fig. 1. To
on the other hand, it is i‘;"‘éo another, close to it, the left of the characteristlc Al, the flow may be arbltra-
one goes from one exX hange of the gnd ai- rily vortex iree, but must be known beforehand. The cherac-
the weight dependadgrlittle on the specific nature of the teristic Af does not chenge during the variations. In view
menslons and depom diate points. In the present paper, of the Tact that the varlational problem has a degenerate
chenge in the 1’“‘51"“? ate . character, the number of eguations for an arbltrary charac-
the wei5m‘lis E‘Pgr‘{ﬁe‘“mzzle, In the case when terictic AM end Tfor a specified weight exceeds the nuaber of
end dimens °“: 9; o s conical blank, we obtain the exact unknowns, and there is no solution, As will be seen from
is stamped o\} fro rom the following, the solution is found only for one of the cha-
soluvion of ThE PTORE 1s not 1o B e o ot oo1l the ohbrbbtentsbie ka0
. olem, it 1s not ~0= 1 .weig re s ¢ s A,
dhen solving thiz{ir\i'ﬁéogglai;gg entry, since in :
° i e . ; w . a
glcal to GOns}deI‘ a 2cessaz‘y to round off the point bfcause : The thrust of the post-critical portion of the nozzle
reel engines it is 1 1 aifficulties and dangers \
of the presence ol technologlica - ] A
of burning. Los with - . P—R+2«(§;.Jy—s¢,dy) (1.1)
s Wi < c
pelow are correct for nozz e‘ -~ i .

e ~g°ﬂuﬁ: %i{i?a:i section, Nozzles with enbl;-: en ' vhere R is the thrust of 5n.0A,
rounding of oo ot rounded off nozzles (the r : From the condition of equality
try az‘? a pagtéi‘}lzﬁugl 2o zero) . of the flow through the charec-
dius of round-o0i teri ties AC & CB we heve

£ th the formulas given .
. alculations performed Wi A ? an ;
below (i’ii?% Zossible to conclude the advisability of any
s D

2 A
TTHAN ——g 0=Sf“V‘S°z4V=° 2
oo A
particular degree of rounding oil. { {

rig. L. rDia.gram showing arran-

§ - ement of characteristics
o £ ;- x, y -- rectangular sys= : g -

The symbols are as follovs 3 is in the center of
tem of coordinatii, ,ﬁ,’? ggégggzzie\:héc}l Sressure in ,‘meit ) the welight of the nozzle is
the cr.it.ylcf_li- 32(;13123" o0 -- counter pressure; W -= vel?:.;{,
sprean: le of inclination of the velocity Bo e e -
- angle betueen the velocity and the charactertstit:

criticael speed.

C=So+ STy (A). ¥y (B), x(B)— x(:1),04]
(1.3)

Here S, is the welght of the portion of the nozzle AB,

S is any continuous function that determines the dependence#

oF the surface of the nozzle and thickness of the wall on the
end dimenslions,

90

w=—F0+D Furthermore

sindcos

_ sing =ctgla +0)
sin(a+ 01" h=v Er o fi=ce

3 A
L=z(B)~z(A) = ady -SO,dy (1.4)
r.zy[p—f” pr ¢ z
xnniﬁso}

na N P . . 4long AC and CB, the following equations are satisfled
®.=y{_p v L oyrrr U A ) !

(see, for example, reference /2/):

E:(’\,F.%.l)i—w‘—‘:-k?'-f sin a sin 0

80 sinasin®
v dy vsin(a+0; b

3 _ .

at ysin(u-«ﬂ)“”“'°>
4 here a nozzle having the

3 t Tozzle, we understan e:

:\ggti:éz;r:ﬁst, con;tructed to specified dilameters, and

1engths, (the ttatement of the problem of reterence /3/).
s

#Tne paremeters Sp and S may include a friction factor, pro-
portional to the surface of the nozzle.
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on Clj, and analogously on AC” » , . o
(i v)=
tional is represented in the following form

B & 1.7)
m, dy (
Ii= P+M|Q‘+3{"G +§:bl (¥)eudy ib;(ﬂ)gn

The fune

b g
whera mq and mp are constant Lagrange fectors, and 1(y)
and hp(y) are variable factors.

We note for what is to follow that
A
3{ba(y) gady =0
c

At the point C, the variations are connected by the

relation

M =\zl, .~ v

dr ﬂ‘ )Wc or Sc=5W b,
¥iac ce

whera dr

By = %Lc—@iu

" e arrive at the following equations
V (1.8)

on BC 1.9)
(1.10)

2fih 4+ St mafin + b,g.;.(-’ b =0
yf‘» 4 My fan 4 Mol + D1g1n = 0

dn Msinasinorzo
ay t = ysin(@+0

(1.11)

(1.12)
¢ Ads,

Sy _
2"/-+m.f,+m,!,+m;—;—k.——°}at point B

b =0 )
efn + mufsh + malin+ biBy () =0 at polab

B 4(y) 18 2 certain definite function of y.
We note that the Eqs. (1.8), (1.9), and (1.12) Tully

v - 16¢) of reference /2/,
epec with Eqs. (168), (16b), end (
e Fai(111) is an analogue of Eq. (164).

in reference /3/ that & solutlon of the

wherea

It was noted
system is the value

Actually, if one assumes the condition (1.14), the.
expressions obdtained from Zgqs. (1.8) and (1.9) for « (y)
and ¢ (y) satisfy the fgs. ?1.10) and (1.13) ror all my and
m,

De

To simplify the system (1.8) <~ (1.13), it is neces-
sa'.ry to substitute the values of the derivatives T'a

Tha s Tlon, ok, Bteuk:

After performing the transformations, we arrive at
the following formulas

My cos o~ 2mwcos (8 — B) = 0 along 3¢ (1.15)
Mg+ 2xypwtg asin6 = 0 (1.16)

— S,
P=¥ tga— sinOcosd = 2 ®sin2p at point B 347
pu 5,
Berore we calculate the perameters in BC, we must
find x, and y at the points BC and the Lagrange multipliers
o1 and mp.

To find these ten unknowns we have the following sys-
tem of 11 independent: équations (Zgs. 1.15) and (1.16) at
points B and C, four equations (Eqsi17), the coupling (Egs.
1.2 and (1,3), the condition (1.4), and three equations at
the point C of the type

YO=4LO]) M= @), a@=ackC]  (1.15)

which express the fact that the parameters at the point C
must satisfy the equations of the characteristic AM,

It 1s obvious, thus, that for a given weight the so-
lution can occur on some one cheracteristic., This fact 1is
& consequence of the fact that the system of differential
equaticns (1.10), (1.8), and (1.9) obtained was of tne first
order.

Since x does not enter into the equations, then in
practical splutions one must deal with a system of eight
equations, which can be readily solved by the method of suc-
cessive approximations. ’

We note that in the arguments given above we did not

“Ine values oI these derivatives are glven in reference /2/:
raulas (19a) -- (19f). It must be borne in mind that in
Tormulas (19a) and (19b) of reference 2 the values sin @ cos

© are erroneously marked sin« cos 9.

65
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use gquations that relate the velocity with the density and
opres ure. Therefore, the system (1.15) == (1.18) gives a
solu ion of the problem not only for-gases with a constant
edis atic index, but also for geses with zaay connection bet-

ween the pressure, density and velocity.

2, Concerning the Condition of Pransversality on the
#ree End. Eq. (1.17), found by variational methods, can be
obta .ned by another method, the idea of which, as applled to
the ptimel nozzles of specified length, belongs to Busemann
/2/.

Let us imegine thet the contour of the nozzle 18 made
ia t . best possible mamner everywhere with the exception of
the ast sleszent ds. Je shall vary this elemeant, postulating
& na lmua thrust. The thrust - o this element is

ap = 2xy (p— P
iccording to Fig. 2, we have

48 = Syandy =+ Spdl, AL —dz = dyctgh
Heace

s 2= —
dP.= 2nydS s,(.,+f,_cn;0

#.5. 2. For use in the derivation of the condition of
tran iversality on the free end,

In the variations of & , the factor in front of the
frac .lon is constant; furthermore, When the Meyer flow 1is
form:d, A = const. It is therefore enough to dirferentiate
the .adex (2.1) the frection with respect to and to set
the .erivative equal to 0.

Gons .dering that

180dp _ o 80 8
ik atiad S T
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. obtain arter diiTerentietion exactly Zq. (1.17).

Particuler Cases. ‘Hozzle of speciried lengtn.

Particular L8893
C=x(Se+ 1)
s a dimensionel factor. Let us assume y =1, and
Sy =0, Sp=1
3y virtue of this, Eq. (1,17) becoxmes
2’-——-—';ctgz=smzb
=
. tais eguation is given 1a reference /2/.

stozzle i3 stamped out of 2 conical blanx. ilere
€ =y {So v =Ly (B) + 0 (AN VI + [y (B~ (A

Hence

. 124 20 (B) [y (B)—ytA)]
5 gy A 2 B BV vl )
=YY (B - y (A~

s Ly (B)+y(A)}
L= 7‘=="L“u+ ¥ B — ¥ (AP

Syomy _ 13+ 20(B)Ty () —wCAY
s, EBi+viAl

Tae transversallity equation (1.17) becomes

P—F e 5 —si ,BU-&-ZMHJH(B)—V(A))
P—F stga — sinBcost = sin ———‘—"—"—“Liy(,)__“‘“

ow
4, Problem With Jelzht Squivalent. In most practi-

.1 cases along witn determining the optimum nozzles of &
ven weight it 1s necessary to choose the degree oi eXpan-
04 of the nozzle. In many cases, one is gulded here oanly
.+ tae weight egquivalent, i.e., by the nuaber § , which shows

aany «ilograams of nozzle thrust are ofi'set by one kilo-

c e o1 welsht.

it 1s advisable to solve the ve-
x 12 T ing the minimum-wave nozzle in such
way as to obtain simultaneously the degree ofi expansion of
:e nozzle.

In this case, the expression for tne functional beco-

&7
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u A
| = P—t6 +mQ + bigsdyt | bigsdy
¢ b

caturally, the system of eguations that express the
tion of the problem rezalns the same as in 3ection 1,
with the exception oV =q. (1.16), This le repleced by the
rolloving equatlon

2nypwttgasin® = S.% (G

The number of uniknowns is reduced by one, gince the

se multiplier m2 drops out. 3imultaneously buhe cou-=
v sq. (1.3) drops out ol thne systex of equations., There
pemain seven unknowns %, & and y at polnts 3 eand 3, &s well
as the unxnownl mi.

Reana Jmen making the variatlon, the for:m of the
poruion of the nozzle wes assumed arcvitrary.
r, oy virtue or the ract that the characteristic &4
ed, the seonetrical characteristics of the section Ca
214 not enter into q. (1.15), (1.16), and (1.17).

ievertheless, in & numerical solution of the proclem,
using for cxainple, =qs. (1.2) end (1.3), it becones necessa-
ry to Lewe into account tne paramsters on the line O

Let us Toraulate the solution ror & nozzle with angle
entry.

Let the-line OAB be an intermediate stream line of
solutlon., Tae line {B wWill e & sectlon of an extre-
The rlow through AC will equal the Iflow through CB,
etc., i.e., 2ll the equations will oe satisfied for the con-
tour of thne rozzle, with the exception ol (1.17)

Taus, by solving the proolem of optimum nozzle or mi-
nicar weight for a contour with an angle point, we therepy
solve the variational probleas ror sach intermediate streas
1ine, thereby deterwining the extremal coatours for the point.
2, located on the extvremal, Analogous results for the exter-
241 oroblexn of gas dynamies were obtained in rererence /3/.

vnese extremal contours will not have tae aininuz

Received 4 June 1753,
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Sxperimental Investigation of Self-¢scllletions of
Gauare Plates in supersonic Flow

Izvestiya Akedemil Nauk SSR, Ot~ G. N. Mikishev

deleniye Tekhnicheskikh Nauk

HMekhanike 1 Mashinostroyeniye, [Nevs

of the Acadewy of Sciencee USSR, Dep-
artment of Technical_Sciences, iechanics
and Machine Building/, No. 1, Jan-Feb
1959, Moscow, pages 154~157

Je investigate the self-oscillations (flutter) of a
square flat plate in a supersonic stream at ifach nuamber va-
lues % = 1.7, 2.3, and 3 for the case when two edges of the
plate, perpendlculartto the stream, are clamped, while the
other two edges, parallel to the stream, are supporied.

The results of the experiment are compared with the
theorsticel solution /1/.

1. Experimental Procedure. The specimens were aade
of steel 1 KhiBNg (%8 = 80 ~-120 kg/mm2) and of duraluminum

D16AT (0 = 40 kg/am?) measuring 300 x 300 mm and 250 x 250
mm, of different thickness. For the ateel the thicikness of
the plates varied from 0.3 to 0,8 mm, Tor duraluninum from

0.5 to 1.0 mm.

The fixture for clamping the specimens in the wind
tunnel is shown in Figs. 1| and 2. It comprises a plate which
is attached with two edges to the walls of the tunael, while
“he other two edges are wedge-like, for streamlining. The
plate has a square cavity in the center. In the bottom of
the cavity are drainage holes for rapld equalization of the
pressures and to reduce the damping of the alr ia the cavity,
The tested specimen is secured from the top of the cavity.
The method of attachment of the specimen to the plate is seen
in the included photographs.

The front edge of the plate is bent at a right anzle
end is clamped by two steel strips, with the ald of which
the plate is attached to the base plate. The side edges of
the plate bear, both on the inside and the outside, against
steel triangular prisms. The prisms are attached to the
bagse plate by screwa. The rear edge of the plate 1s clamped
by means of a steel cover plate., By adjusting the screws
with which the rear cover plate and the front bearing prisms
are secured it 1s possible to choose such & position, at
which the edges of the place can come closer qulte freely

Bk sttt st G 20

e Bk

-

Fig. 2

The fixture is 18veled

portion of the wind tunnel (horizontally) in the working

Thus, the plate 1s ex;
a posed to the st
tggl:agitatygck, from the upper side, On‘t;:a§osgra iero
¥y of the fixture, there is stationary air side, in
The pressure in 3

the pressure in phe Btr:gz.°3V1ty is prectically equal to

The pressure was ‘
th e measured at severa,
€ stream and iriside the cavity, by meanslogoggﬁgu:;tgaég

meters and also |
type. o by pressure transducers of the rheochord

To determine the instant whenflutter occurs, and also

to determine the fre
quency and the wave form of
gg:é::zgeg tension gauges were used, Thetﬁgn:igilla-
ed to the lower side of the plate, The wimsz:u~

e tension gauges
plate outside theswa%l O?asigdtzﬁigygh the body of the ase

to the air blast, fre
quency t
sonance method, ’For this gur;:::

re exclted by a orbers,

which was fastened to th

e fix
was deEermined by means of a :::ﬁ;me
gram of the recording produced by tn

The resonant frequency
ter and from the oscillo~
e tenslon-gauge trans-
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duecesrs. The wave form of the oscillatlons was determined
oy uezns of sand. The only plates selected for tests in the
wind tugnels were those in which the natural frequencies de-
viated not more than 10% froa the caleulated values,

ime of the blabh, the ‘Process of the os-
istigated witli“the.ald of high‘speed

The plate vas wade to flutter by selecting the thick-
ness of the plate and by continuously varying the pressure
in the stream at a constant liach number, H

2. -Certain Results of the Tests. Observations have
shown thay long before the plate begins to Tlutter intensely,
the gpectrum of the natural frequencies is strongly deformed.
For example, the fundamental natural frequency of the plate
at the instant of occurrence of ilutter increases by nore
then 1,5 times compared with the frequency in still zir,

iz, 3

L r 2 - F 6 & & 71

« At the same time a chenge occurs also in the wave form
of the oscillations. Ffor example, the proiile of the nre-
TIutter'wave form ol the oscillatlons of the fundamental tone,
unlike trke profile in still air, is not symmetrical, and the
peakx of the profile is shifted towards the rear edge. Fig. 3
shows the theoretical pre-flutter profile of the wave form of
the -fundamental-tone oscillations.

The actual profile, as shown by measurements, was suf-
tly close to the profile shown in the figure,

In the stability region, there ere observed weak oscll-
,10a8. of thé plate in the stream. These oscillations occur
the'naturalAFrequency, have a random character, and are

dly“demped. «hen going during tae boundary of the stadi-
lity reglon, the randomly occurring oscillations are replaced
by lntense Ilutter. .

. F1z. 4.shows curves .ol the process of the currents of
Plutter, recorded with the aid of strain-gauge transducers at
“the woints 2, 3, and 4 (see Fig., 3). ~first the oscillations
that occur, begause of various random disturbaaces in the
“wtreém aré rabldly dewped (Fig. 42, b). Then, as thé pres-

suré in the stream 1s increased, they are gradually changed

72
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VY hbvy vv oy
Transducer 20.04 sec

ViV vV VY
e w~VﬁVE; -

Iraasducer 3t
. ————y

Troasducer 4 o T

iato intense undamped os¢illabions (Fig., Ac,'d).-
In the case or natural oscillations of the 2 bs
ve-forus of the oscillations areé standing waves,pingez% E;g
tter mode the oscillatigns‘of the plate recall traveling‘
es, Téig is seen Iroa a review of.the £ilm,  obtained with
«ld of high speed motion picture»photography. Plg.
Tilm for a steel plate 0.3 ma

The photographs’ show approximately 4/5 of the length

ol tze plate on the rear edge he £ i T

© bl n tk e, he front portion of the »la-
te i§‘co¢e?ed oy the wall oT the tunnel (upper dark corner),
T?7 direction of the stream is from left to right, & square
iggdozithtg pétcn of,l/Slof the lenzth was drawn on therlate,
ar J tae transverse lines of the grid a howe in tx
ipice M x i 3 re showae in the

_The irst photograph corresponds to supersonic Slow
over the nlate berfore the occurrence of self-Bscillations
The subsequeqt seven photographs 7ix the vositions of the.ola-
E$S al;o dgrln; the tine of one ¢ycle of stroagly developed
_ﬂttgc. . The photographs display clearly the aotion of the
aunp in the vlane of the plate, Consequently, the flutter oF
the olate revresents iravelins waves, - ;

ADuring a gertaia time the plate oscillates with a
1t amplitude, Then a Tatigue crack is forsed at the
°
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and the plate begias to disinte@rate.

The disintegration of the wlate proceeds opoosite to
the stream, In ononomﬁaphs 9 -~ 14, Fig. 5, is shcwni the
elop@ent of tae fatigle crack and the disintesr&t¢on of
te during the blasting process, Fig. 6 shows also
sraph of the~disintegration of a still plate 0. 5 mm
cen aiter the blast. .
The greatest amplitudes and the rastest disinte
i» in those plates in which tae edge can comé closer
% the time of osclllations. For exemple, steel plates
were destroyed in this case within three or four seconds
fter the occurrence of intense oscillations. The maximum
lituée of oscillatlons in this case reached approximwate-
3 nm. The limitations imposed on the coming toge-
I the ednes decreassd the amplitude of the oscilla-
tions and increased consicerably tne time necessary to dis-
integrate the Dlate.

The dlaintegration 2lways begins in the most highly
gbressed rear edge of -the plate.

Various tested wethods of fastening the edges of the
late (particulerly fastening of the froat and reer edges of
he plate directly by screws to the fixture) did not chan&e
he cnara ter of ihe disintegration.

The theoretical limit of the stabllity region is de-
termined by the expression
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=T P calculated curves are in satisfactory ‘egreement With
1 ot riment. . . .
(Bné”. 5=.=V;‘T‘, N”s,‘) °
where a is the length of the plate, D the cylindrical stiff=-
s ness, » the pressure In the undisturved siream, x the DOLy=
tronic index, c, c% the speed of the stream and the sveed of
sovad in the undisturbed stream, The value of the narameter

expe~

A Tor the principal regilon of stability, caelculeaved fTor a L. T
quadratlc plate and reported to the suthor by 2, A, lfovehan, Movchan, A. A, On the Stability of a Panel”Moving in a Ges,
ls 814, #imures 7 and 8 show a comperison with exverizent i P01 (Applied Mathematics and Mechanles), Vol. XXI,
o the calculated llmits of the principal region 0F Stabili- s Wo.u2, 1957, " Coree o C

by (the dotted curves correspond to the value s , while the .
d curve to 3, ). Fimg. 7 shows the comparison Ior a .facl

a

er of 1.7.

2% / ] o ‘ o Co - o

an \\\"‘ .
/’ i
L K
29
L3 il
- i %7 % -
Fig. 7 Fiz, 8 . . :

The abscissas represent the ratlo of the thiclkuess of
2te to the leagth, wnille the ordinates represent the
to Younz's modulus of the material of the nlate, The

N
e atal points correspond to the nowment of occurrence
self-oscillations. JIach experimental poiant is obtained

a nean oi several tests, The first two points correapoad
steel plates, the third point to duraluminum plates,

Flg. 8 shows a comparison with experiment or the cal- - v
culated limits of the stability rezlon as a fuasctlon of the
.iach number, The curves are plotted for dureluminun plates
oressures corresdonding to sea level,

1

i

| ,i
The experimental points were also reduced oy recalcu~- [

lating to those conditions. Each experimental voint corres-

ponds to a plaete of sueh thickness, et which the rlutter

ctill occurs, In thicker plates, no flutter was observed. i

fAg can be seen from the foregoing coaparison, the
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Self-0Oscillating Systems in the Presence of
e, SLloWly nanging kxtvernal Influences
Izvestiya Akademii Nauk SSR, Ot- A. Ao Pérvozvanskiy
deleniye Tekhnibheskikhnsgig S
dexhanike i MashInostroveniyei /News

9,
of the Academy of Sclentés USSH, Dep-
artment of Technical Sciences, Mechanics
end Machine Building/, No 1, Jan-Feb
1959, Moscow, pages 15_8-1!61‘.

The' essumption of &lowness- of the variation of the ex-
ternal disturbances that act on the system which enters in-
to a self-oscillating mode has made it possible to develop
2 sufficlently effective procedure of dynamic calculation /1/,

However, 1t was assumed here that the influences them-
celves are speclfied functions of time. Therefore, it is of
certaln interest to develop a procedure for the case when the
external influence is a stationary random process, specified
in terms of its probability characteristics#

Let us consider for simplicity the dynamics of a sys=
tem, containing one nonlinear inertialess element

' QM= +Py=N(ps, y=/@ )
where.Q(p), P(p), and N(p) are linear differential operators,

i(x) is a single-valued odd function and z is a statlonary
normal random process,

de assume that in system (1) there can be realized at
2 = 0 a self-oscillation mode, and we assume that z(t) repre-
sents a process with zero mathematical expectation, while the
variations of z(t) within the limit of the self-oscillation
period are insignificant, i.e., with a probability close to
unity

. 2
Hrem  (r-3)
where T is the period of the self-oscilletions.

We shall seek a solution of (1) in the form of a sum
of veriodic component x1, y; and a slowly-varying (in the

*The principal idea of. the procedure detailed below is
vointed out in reference /2c).

sense’ indicated above) compénent X2, Y2

kL ey FREeT. ympcbye e @
witH Botli* coliporiénta being generally spoakifg réndén furice
tionB)of time,, If we'.mssume furthermore that the system (1)

satisfies certain obﬁditlona‘oT'applicability of the method.
of hermonic linearizaticn, then T

xmAsinat | . N . 4

into ‘s Foirier serisd we- cen retain’ . -~

e
i:; de nov separate from Ege. (1) the equations for the
dli om; 8 R : 4 ; g

perioc . ,

Qs+ Plilsams, . twslhzd w

4 “ppsififing - that " the amp] itude A in 8180 & slowly varys
in? Tnet L n'the gense of (2), we obtain from the system
(5)- the rollowing conditions * A

ReflB o g, ed50, . 1m ol ”

.. The s830ond oBhdition,” &b iiaual, ‘dsternihes tHs’ thes’
quency’ of the self-odcillation, which in this approximation
is found to be constant, and the "phase advance'" effect is .
not %g?eo?gg %ggq“rpr pxamp;g reference /3/,

thedepe; [ bl plitude” A-on

ondition ef (7).can be coneiderg%‘ua an
Lor, the nden " f Wl
Smpohent; % VUt ¢
G4, mmo

Latvgslgasumg_ his dep
T

explisdtiform! 0 ! nid
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o ,-»;_‘i,‘“"‘f‘,(.") o Cnwncin iR o
.+ Therd the trdnafer funciion’'gp(4, xp) is expressed
only in terms of xp, and the system (6) reduces to the form
: . Q) r PP m=get (a4 L0y
e .;:!’\ 1i“¢ﬁ'i*"(’n)., l‘;l

An approximate solutlon &f the system (10) can be ob-
tained elther by direct.linearizaticn, or else by using the
method of statistic linearization. 'We note that in the case
of direct linearizatlon 210) there is no need for resolving
the implicit dependence (8). ‘In‘fact, ‘we have -

o g0 _B4r 90 (30
RS A1 [fa;:f'ﬁ, £ (Tl) ]..-a”

ixowever, for an arbitrary plecewise-differentilable
non-linear characteristic f(x),“it ‘is:possible to show that
2 qp/9A = 0 when X3 = 0. 5

Hence
u'(:x)s%!’ ”

ss oA

and in the expression for the derivative, naturally, 1t 1s
necedfiary to put A = Ag,  where Aj ‘is the amplitude of the
self-oecillations, caiculated in the presence of externsal..
disturbances. o )

stice. liﬂeariz,at',ipn (4in the simplest, most
the assumptlion of normal dis-
& components. of the input: signal.,

where¥ wato
rhE)ds (13)

‘3, 0 5 IR G) s PP

wiwadb” sy, ho Lupon hange in:dg*/dxp

in ‘the“probable” rangs” x3 both mdthods giveé identioal results.
h ERTEINS

YT Tollows Trom a5 oxamination of the system (10)that, the:

mathematical expectation x2 vanishes.

80

Fig, 1 Vi

. brati,
2) magnet, 3) elg
pover suppiy,

0 accelerometer,

ctronic °°mmuta1;°r” sensitive cojl,

s 4) contacts, 5)

i
aitorase "
%‘}};e dyna;lic
P+ bp* b eptayr 4 bl @) = ka(Typ 4 1) 7 Sawatien
la Tav, cap Tell k), gy TiTpod st 4ok,
éingth:c:g%le' of deviatioy of ¥
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We seek the solution of system (14) in the form

=15+ Asin ot
For the characteristic (Fig, 2) we have
J)
H
—1 < —A
<4
1 23>A
YA
- A 6]
(8 .)for this system will have the form
bat+d+ kg (A 1) =0

pu— A
Q= &!ﬂn}'cs'm;;
————— el

Fig., 2
Conditions
awt—c =0,

1 .
O, z) = g At — A xF =0

3
(15 ) that

- <A

Linearizatlon in accordance with (11)yields

It follows from
(16)

2 1 be —ad -

9= T ek N

It 'is now possible to determine the mean-square de-
viation ox in the usual manner

. T © BT 0t 1] 5 fe)de
kAT IS
5= bc + ad R "
S[—bn’-{- 24w — it of

o,
2

| ]
Fig.'3. OCorrelation functlon
of turbulent disturbances (1)
and its approximation (2).
where S, (w) is the spectral density of z(t).

i be & a by the
Let us deseribe a procedure for Ca]:culatins by
nethod of statistical linearization. It Tollows froa (15)

at I —
o y l'/% (Ao + AoY A7 — T 18

and the limits of variation of the q‘\xantlties are as follows

50-Yr 2014/03/14 :

st A, Te ASA<A,

Let us- furthermore find
e v2a
ym ._“f- ‘;IN sl'\A_‘
Which, in particular, directly confi.

)
the method of statisbloal 1insavipatins, ' ()®

9‘*:"2"":31:4'-
6% =

We now employ

Ye assume, as already indicatoed a
bove, the distribu-
{;:og ;)f‘ X2 to be normal, although the limitation (19) ghgzld
aken into account, J.Then, by virtue of (13), we have

- = 7
* e wn A,,“‘(x)‘*l-“ W‘,‘Zéj'(”
Where
1
A (l)=S X aic Sin 26—y,
Toe

Ay
G -

A - N .
(14) we  qurve of Jy(x) 1s shown in Fig, 4, Inserting into

AT 1] 5 (0) due
- O R (P + W= st F

i 1

,nz_‘—

whith can be considered as an im

| plicit expression f a

3;.1;;, t;‘lli quantity % can be .obtained by sgme appgoxz;\‘&te me-
. en, for.the mean value and the dispersion of thi

blitude we have the following formulas e an-

4,
Ap= —}% a*7z(a),
=8 80, d2 2
Tpl= 2 ay(ad— ——Vf: Acp Ja(a) + V_f““v"(’)

1 "
R e e
o

o

.
Iai@) = {3 + ¥T=33) e~owx
o

have been celculated a

Fig. 5. nd presented in the form of graphs in

The description of
clonely eeisocrt the accelerometri

calculations for

¢ system was gra-
t;clo us by I. P, Pal'tov, and the princi%al
€ system were performed by V. s. Baraﬁovs..
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One Approximetion Method of Investigating Self-Oscillating
Syétems in the Presence of Slowly Changing
External Influences

Izvestiya Akademii Nauk SSR, Ot~ V. I, Sergeyev
deleniye Tekhnicheskikh Nauk,

Mekhamga i Meshinostroyeniye, [News

of the Acadeny of Sciences USSR, Dep-"

artment of Technicel Geiénces, Mechanics

and Machine Building], No. 1, Jan-Feb

1959,Moscow, puges 162-164 o

In the present investigation we studied self-oscillations on the
basis of the method of the equivalen® lineerization of nonlinear oscil-
lating systen / l/ , end its further development as applied to non-linear
systems of high order /2/.

By way of an example, f#llustrating the application of the discus-~
sed method, of the investigation of self-oscillating systems, we consi-
der the servomechanism shown in Fig. 1, the principal elements of which
are the setting shaft 1, the output shaft 2, the amplifier 3, the de mo-
tor with separate excitation 4, and the step-down reduction gear 5. We
choose for the nonlinear element & link with "saturation zone" and ar-
bitrarily lump in the characteristic of the motor (Fig. 1). We write the
dynamic equations for the linear portion of the servo system in the fol-
lowing form:

(Twp + 1) pB = kil )

( d
. =
(T2p + 1) = ksa — (ks + kap) B @

where T) end Tp ere the mechanic and electromagnetic time constants res-
pectively, k1, ko and k3 are constant coefficients, determined by the pa-
rameters of the servo system, I the current in the armature circuit and
a(t) slowly varying external signal,

&
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We shall assume that the stability conditions for the charac-
teristic equation, corresponding to (1) and (2); are not satisfied. In
this case, in the presence of substantial nonlinearities, and particu-
lsrly of a "saturation zone" self-oscillations can occur in the system.
The characteristics of the chosen type of non-linear element is an odd
function, and consequently by using the method of equivalent lineariza-
tion, it can be represented by the following approximate expression

F()y=q"@ 1)) +q(@ Il (3)
Here o is thé amplitude of the self-oscillations, I'' and I' are

‘the corresponding aperiodic (constant) end periodic components of the
current I. :

Let us assume, for example, the amplitude of the self-oscillations
to be limited by the values b -I'' £a <b-+I'', We can then obtain the
following expressions for the terms in the right half of (3).

o=k [ in 2 =Ty
9. 1)_k.[2 + ]/,__( =T ]

Let a(t) be e certain slowly-verying function, which can be re-
placed with sufficient accuracy for practical calculations by 2 broken
straight line (Fig. 2). Let us impose certain limitetions on the time
segments Atg (s = 19 «eq, n), a Limitation that is obvious, the minimum
velue is determined by the period of the self-oscillations, il.e., Atz
> 2nfws, wherz*s is the frequency of the self-oscillations. On the ba-
sis of the foregoing, we replace a(t) by the following approximate ex-
pression .

@) =a(An)+a(dr:) - .. 2 AL 4
vhere -
a(.\l,) =A,+ B A, (A, ==t 1% <1, S 1%,)

In this case, the function pa(t) is piecewise-comtinuous (Fig. 2).
We write Egs. (1) and (2) for the aperiodic components of the self-oscilla-
tions on the s-th segment of time (A tg) . .
(Thp+1) pR° = hl”, @
\Tap+ 1)1, =k, —kad," — kapp,© ®
and have on the besis of (6) :
a, =, +BA,,  pa,=B, pa=0 "~ ®)
Inasmuch as B''(t) is also a slowly varying function, we have by
analogy
8,"=A,+ B A,  pB,"=B;" pB, =0 (10)

Differentiating (7) and (8) and taking (9) and (10) into account,
it is easy to show that the following equality holds

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/03/1

w,=p3, 1

and this meens that the error in the.displacenent of the brush of the
responding potentiometer will be aconstent auantity inside each s~-th
segment of time.

A, = A, — A% =const (12)

ty . tsq t

1 i
el —t—h.r
[ SRS

]
—
K Tig. 24
Consequently, the replacement of thz curve a(t) by a broken line
leads, insidz o each s~th time interval, to the equality of the mean
values of ths cagular velocities of the input and output brushes of the
potentiometer (11) if their error angle (12) is constant.

The choice of the magnitude of the intarval atg is determined
by the charac of variation of a(t): cox nding to a suoother va-
riation of a'(t,) & greater values ol Atg d vice versa. Tne Follow-
ing {s obvious -~ 28 ‘Atg decreases (in init Atg = 2n/ws) the accu-
racy of the lculation of the parameters 1f-oscillations increa-
Ses.

Taus, vnen the externmal signel is reploced by a function of type
(6), the self-oscillation process in the considered time interval can
be approximately represented in the form of 2 sequence of quasi-stationary
processes the duretion:of éach of,which is determined by the choice of
the velue of Atg. - Here the transition from one quasi-stationary mode to
another is realized so to speak "instantaneously" on the boundery of the
sections (Atg.1 and Ats, Atg and Atg.l, ete). Inside each quasi-ste-
tionary process the values of ag and @g are assume constant.

et us detexrmine B'' for the problem under consideration. Insert-
ing (11) into (8), we find

3,7 a,— PFG+ I

= 3)

87

|IA-RDP81-01043R004200140002-4



Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/03/1 IA-RDP81-01043R004200140002-4

where the guontity IJ' is still unknowm. ’F‘rom (13) we determine the
“oonstant” corponent of the error of the sysvuer
_I:,pa.-f- 1

a8, = u

(14)

o atan

Usually voxr Ag'! is ouall, ez lp 1s a valuz ol e
seme order ol .zgnitude as the gein of the - Tier 3.

Let us Catewmine age For this owwmose we write (1) and (2) 2
the eperiodic COMPON ..Tw, inserting into (&) the value Fp(l) = qls,
It from (3) inct ed of the right-hard & wutting @ = 0 in (2), and
performing severel transformetions. e -11y obtain the following
differential cyuction :
{T\Tagb 4 (Ty + TO P + U + hag (04 [ P+ Kag (000 1,8, =0 (19

driting down the characterisbic equetion (p £'z) for (35) end
putting in it = = j« we solve this equation with respect to the func-
tion q(a, Is"), ¢hich we insert in the left helf of (5)

We then obtain after t ansformations 6

b—1,” P 2T+ T }
a : ( % =L \RIT T — T + T k] I
Inasmuch as the paremeters of the dymanic system are specified,
the right holf of (16) is a known quantity. Using the graph given in
reference /3/, ve can find the value of the ratio
b—1,"
— = cansC “n
“
which is ind..‘aaﬂd.ent of a(Ats) and is consequently independent of the
form of c(t)s The 1oregom5 follows directly from 516). We can nov pro-
ceed to dete; e and Ig". Ve insert Fy(I) = g"(es, Is") from (3)
into (7). Then, 'I::-.‘..un" (10) end (11) into account, we have

(18!
97le5, 157) 2 Pog 8

From o sirwitaneous solution of (%) cnd (18) we get
bhy o pa,

“= — 1. gy
k (f*.m,.‘_’_.'_'. +l/l— b Ty
g z ] L3

From (15) we can determine og saguences of guaAsi-stotii
pary processas over o given time int From the found vaiues ol o

ve reedily dot2 cwom (L7) the v: 5, and then use (1) %o de-

‘termine the oz ¢ ("de") components o errors of the syston

ABs"s In o 49 5o from the amplitude of the self-oscillations of
the current I, colculated from (19) 4o the anplitude of self-oscille-
tions of tha coordinate B, it is necessary to make use of ().

86

In the foregoing calculations, the external signal was assumed
not to be random. Let us now proceed to calculate a self-oscillating
system under the .influence of a rendom function, one of the realize-
tions of which is shown in Fig.2 in the form of a(t). By way of an ex=-
ample of a random function.as a typical imput signal of a servomecha~
nism with de;.lnite *obabiuty-theory chargctenstics , Wé use ‘the ‘data-
given in reference /4/, according to giiich.no, Mmitations whatever are
imposed on (%), while the function pa(t) is assumed to be stationary
wvith a characteristic specified in the form.of a, t:orrelation i\mc’cion .
and 2 matheme.tica.l pectation of the. .;o:l,lomng type: . '

Kpls) = o [paj ™™

where ¢ Lpo:] is the meen squered d,ew_w,:.on, “C the interval of veriation
of the indepehdent variable, and M[px] is.the nathemstical emec'b**f one
From (20) we ge% . - o

<M [paj --mnst . . (20)

. @

*Then the cispersion end the mathemetical expectation. of the en-
plitude of the self oscillations are determined respectively by the fol-
lowing; relations:

i bky — M
otfa) =% /ILZ“], M[u]:——'—zﬂ 12

where E denotes the expression in the denominator of (19). Using (22),
we can readily find the corresponding probebility-theory characteristics
of the aperiodic component of the self-oscillations.

The quentity fe[pa] can also be calculated from the formula for
the dispersion, withQut resorting to the calculation of the correlation
function.

As is Imown, a stationary random function a(t) will be differentia-

ble for all %, if its correlation function Ka(€) @as a continuous second-
ary derivative with respect to T . In this case, the rendom function
pa(t) will also be a continuous stationary random function, with
K = ) =h
[

When Kpo(T) is determined from (23), the value of a2 [pg] can also
be ‘)za.lculated as before from formula (22) with a count of the equality
(21

Received 14 June 1958.
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On the Motion of a Slender Solid Body under the
Action of a Strong Shock Wave

Se Se Gzﬂ.gory%_‘n’

Izvestiya Akademdi Nauk 8SR, Ot~
deleniye Tekhns ches HNauk, "Me~
khaniks i Mashinost niye [News -

of the Academy of Sciences USSR, De-
partment of Techniesl Sciences, Macha-
nies and Machine Building], No 1, Jan=
Feb, 1959, peges 165-166. )

If & shock wave is incident on a solid moving in air, then, be-
cause of the change 'in the distribution of pressures on the surface of
the body, the lew of motion of the latter changes. To find the changed
lav of motion of the body, it is necessary to know the Pressure Iield,
produced by the wave moving pest the body, and to find this pressure
field it is necessary to know the law of moticn of the body, and there~
fore the solution of the problem involves in general very great diffi-
culties. If, however, the body is "slender" and the wave strikes 1t7in
such a way that the additional disturbances behind the waves caused vy
reflection and diffraction are -smell, then, neglecting these perturban~
ces* the problem concerning the motion of the body under the action of,
a shock wave can be solved.

‘Let a plane, cylindricdl, or spherical shock wave propagate along
the X axis in eccordance with the law -

x = R}
and let the pressure dtstribution ‘behind its front be
PP lxt)

At a certain instént of time ,the.wave reaches.the: nose of the -,
sharp slender body, moving along the x axis. In this case, the surface
of the body is projected on the plane perpendicular to the x exds » makes
& figure with a smell area (the body is "slender"). . During the next
instaiit, the body is submerged by the shock wave ; and is acted upon by
& pressure equal to -

. ResX, s ,
Fo=p S Pty 9 F du (D

H ty
*This essumpbion is analogous to the principel assumption used by A, M)
Krylov when he formulated his famous ‘theory of roll of & ship [1].
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Here x = Xg(t). is the known law of motion of the body, S is
the area of the transverse cross sectioa of the body, u is
the coordinate measured from the nose of the body along the
X axis inside the body. We assume here that in view of the
thinness of the body, pressure at the points .of the parameter
of transverse cross sectlon is the same, Taking into account
the slenderness of the body, we assume that" B

sw=elt)  eqn

where L is the length of the body. Thén the expression (1)
can be represented in the following form
L Me-Xem
CFeFern (| cmRX@ e dar @
. °

Here ) )
Ry =LR(Y), “Xo(t)=LX(®, ~t=T=

T 1s a constant with the dimension of t‘ime‘, for example, T =
L/a0,~where ap 1s the velocity of sound in the undisturbed
alr In front of the wave. o

- The translational motion of the body will then be
desceribed by "the following equation
. R(e)=X(r)
. #:‘3?“’“& CWPLX (A4 », e+ NF (D )
K ) : o i
vhere NF(T) is the known force acting on the body, for ex-
ample the thrust.of the engine. Rewriting (3) in dimension-
less form, we obtain
ax R(ﬂrxro
e\ COPX@+y, v *
o

which -1 an integro-differential equation for X(T). Inte-
grating:2q, (4) twice we reduce it to the integrel equation

= ROSX® \
K@= wfers r)( § emPr@+e :m) R ]
o °

-
O =athi gy §cr—wmd= )

i PRI PR r

where a and b are dimensionless initial positions and velo-

city of the body., The problem thus reduces. to solving -Eq.

(5). . This equaticn cen be sélved by the'classical method of

successive approximation.

Denoting by letter A the operator that appears in the
right half of Fq. (5), let us write the latter in the form

X (1) =AX () )
. If the solution X(') at a certain instant of time
To changes into R, i.e., X(7:)'= R(70), this means that the
body leaves.the shock wave in its entirety, .but after this
instant its motion” 1s no longer determined by Eq. (5), and
it 1is known that

. < .
X (1) =X () + X% T~ 4 v S(V—G)F(()dt )
e

Therefore, the problem consists of aef;ting up the so-
lution (5) in the interval 0 £T & THif there exists a 7,<#°),

Let us define operator A* in the following manner

oy = AY #PAV € R
=i S he @

Then, obviously, the operator A* transforms any ocon-
tinuous function V('={ € R(7) into a function with the same
properties., Consequently, by solving the equation

X® = A X? @

by the method of successive epproximation, i.e. by putt
X%, & A¥X*p, we have | 5 ’ g

) X'\ (A< R(D ()
Congldering ¢' and P to be bounded, and R(T) to be
monotonically increasing, something that always is satisfied
in practice, we obtain for any continuous function Vi < R or
Vo < R the following inequality

<

A — A% S pyeft + R(t)ny:&f(()]g B~ (B) K an

where k(%) 1s the function from the Lifschitz inequality
[P, 9 =P &Y <k(Ov1 — v§ )

Which is assumed to be satisfied, and q = (max o')(max P).
Using (11), it 18 easy to esté.blish that the sequence
{X*n('r:)} converges uniformly for all values of T to the-

solution X*(T) of Eq. (9). In the inverval, O <T <7, where

To 1s the root of the equation X'(7)) = R(Z,), the quantit

X#(T) 1s the solution of Eq. (5), i.e., the solution X(z
of our problem. °

The solutlion constructed corresponds to the case when
the area of the transverse cross section of the body is a

92
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continuous function of the variable v, or more accurately,
when " g'(v) is a bounded, piecewise-continuous function, and
o-' differs from O only at 0 < v< 1, 1If, however, the area
of the transverse cross 'section of the body ex‘per*ancos a
discontinulty in certailn cross sections (for example, when
the tall sectlon of the body has an area different ‘from 0),
additional terms appear in Eq. (5). These terms can be ob-
tained automatically from the presentation of (5), if it is
conslidered that

oy=a'()+ i as(y— u,)
. =

where 71’ (v) is a plecewise continuous function, & (V) is a
§ ~function, and &4 are numbers that determine the jumps in
the area of the transverse cross section at the sections v =
¥i. The resultant equation also admits of setting up a so-
lution by the method of successive approximations.

Received 13 October 1958,
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‘ wedge=ahabed fusélagé and a triangular or, arrow=shaped’ w:mgi

Us ful Interi’erance of an Airroil and Fusela.ge :
in Hypersonic Veloclties .

Izvestiya Akedemil Nauk SSR,. Ot--, . . . L. Grodzovskly
deleniye: Tekhnichesklkh Nauk, . Me LT L
khanika 1 Mashinoatrozenixe T e

of the Academy of Sciences USSR, De- -

partment of Techniéal Sciences, Mecha-

nics and Machine Building/i, No. 1, Jan-"

Feb., 1959, pages 170-173

; ‘The piplane of* ‘Bisenbnn Viva {5 the-first model: of &
system which makes it possible to transport a certain volu-
me. at, supersonic. speed_ withon ivins rise to further wave
reais’cance. . . R

Three dimensional systems that make use of the’ useful
Interference of the pressure f\ield of the transported body
end the carrier surface were considered by A, Ferri /2/ .
The.results of.calculat, s of such systems by linear theory

0 ave” shown’ that the. applica.tion
1mpz'ove the, quality of the
3 spe ified. vailue: of the 1ift
coei‘ficient Cy the fineness ,ra’t. o K, - Oy, Cx of & system con-
slsting of a aring (triangular plate with sonic forward and
stralght rear edges), bearing ‘dgainst a wedge-like fuselage,
is 34% higher than in the case of an isolated wing and.fuse-
lage. In the case of a triangular wind, bearing against a
fuselage in the form of. half of a cone,-the fineness ratio
of the system is obtalned by linear theory 12% higher than
in the case of; an. isolated wing and, conical fuaelage of the
sames volume : .

s;.der analogo
velocitiés wher ‘the résults.o
1. be applied. Wel investigat.e combin
(eis. 1a), a half-conical fuselage and & tridngu -
1b) and a. fusela. e.in the orm. of-a - half=body;; withipo-
shq.}: and; a: 1 ing a.t z 3

#Analogous systems were considered inaependently in 1954 by
Yu, A. Grebnev, N. T. Dan'kov, and S. S. Semenov.

947
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On the basis of the law of similarity for large su-
personic velocitlies and stabillzation of derodynamic coef-
ficients /5 -~ 8/, the results obtained can be used for bo-
dies of slmilar form at large supersonic speeds.¥

The geometric relations.of a combination of a wedge=
like fuselage (with an angle: of wedge: 2w )- and a triangular

or arrow-shaped wing are shown iu:Fig..1a, where

ul
i

& 18 the angle of thefront of the jump from the wedge, and
&«-1s the Mach’angle. ) :

s

In this system, there acts on the lateral surface of
the wedge and on the lower surface of the wing a constant

relg.tive pressure o—r
s P aliag = e+t

In“the remaining surfaces of the system the relative pressu-
re 180 _(the lower surface of the'wing' 1s cut at the Mach
,angle; Fig, 1). -Correspondingly, in'the case of & triangu-
lar wing OAB (Fig. 1a), the coefficient of 1ift referred to
“the carrying area of the wing OAB is~ - - = .

e T Cym(x+ Nt ) 3

at & fineness ratio T -
: xS wI D=1 .

it UIn‘the case of a sweptback wing OACB (Fig, 1a), if
the rear edge of the wing AU is made along the line of’ in-
tersection with the Mach cone and a vertex at the point 0,
then the-entire increased lower surface of the wing ls acted
upon by a‘constant relative preéiasure B-= 6, = (x+ 1)w2 (at
a constant wedge resistance).” conse,qu"entlg,‘ the quality will
also’ indreasé somewhat by 4.4% at c='1.4, o

*Thus;" for example, at large supersonic, spéeds the product
of* the coefficlent of wave resistance and the square of the
elongation 1s a constant quantity, CxLe = C* = const. The
value of the constant C* (which is independent of the Mach
number) - 1s“bést calculated from & calculation of the flow a-
round a slender body at M—»oe )see, for example, /9/).
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Wi 3 o cot . oo
'mrn-dimeui.omlf_qnnmt that make use 0f the useful
P pressure field of fuselage and wing; a -- wedge-

d triangular or sweptback wing; b — seni-conical
apZular wing; c == fusclsge in ‘the form of a half-bady

pe and correspokding wing... . -

Tig. 1«.
. -of

To investigate a combination of & semi-conical'fuse~
lege and a triangular wing (Fig, 1b) or a fuselage in, the
form of half-body 'of.power-law form and' 4 corresponding wing
(Fig. 1¢), we use the results of the caléulation of the' flow
parameters at hypersonic velocities around 'bodies of revo-
luticn of power-law farm /9/ (see.also /107, /117), based on
the thegry-of ‘non=stationary:one~dimensional self-similar
flow of L., I. Sedov /12, 13/. (The tables of the parameters
of the.flow.of bodies of:revolution of power-law form r =
ox atvalues -of m*from 1.0 to 0.65 were .calculated.by.c1956
by A. G. Velesko, G. L. Grodzovskiy, and N. L. Krashennikova).

In the systems under consideration (Figs. 1b and c),
the forward.edge,of the wing OB —rp = cx® coincides with
the shock wave.fyrom.the half-body.0A —rp = rpex®, and there-~
fore the flow around the half-body coincides,with the flowss
around the.entire body.  The characteristic feature.of this

flow is the similarity between the; profiles of:.the.relative

Valueg, of, the, pressure pp = p/bp,- density B = P/Pp, ete., .as

LB ons,of ‘the reletivé rdadius.ro = r/Tp. (p2, po.and P

aré the parameters on the shock wave, = ro/rp -ié the natio
of the radius of the body to the radius of thke Shock wave).
The;.re_sults_gf, the calculation of the profiles. of the pres-
sure’'and, dehsily at X = 1.4 are shown in Fig. 2, .The data of
Fig.. 2a-make it possible to.determine, the distribution of- the
relatlve préséure over the lower surface of,the half-body..
frou’the relation . Sl e Ll

sl

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/03/14 : CIA-RDP81-01043R004200140002-4



§ —_ AP fdny*
and to F=zri 7;)»

and to find the corresponding value of the equality of the
system. We give below the values_of l(/c—y and K/L at diffe-
rent values of power exponents m(L = L/ro is the elongation
of the shell of the half-body), ard also, for comparison,_
data for the combination. of a wedge-shaped fuselage and &
triangular wing -
T om e 10 (%] 085 0.2 7507070 p.65  wedge
Ky = 1.000 099 0980 0965 0.047 0915 0.875 0.2%
KL~ = 08 0735 075 0.7%5 0.785 0.785 0.765 0.7

1

7] = 1o - Y@ o as =

Hig. 3. Profile of relative pressure U, spd density @, in
Ahé awsephng .0f: a Body Of power-law shape, T="cX’, W a supor?onsc
streaw (%=-1.4). PR R TS . .

‘THe 148t~ column contains the parameters for a wedge-
fuselage. and ‘triangular wing: ' The valué of Cy per-
t0" the total area of the triangular wing ABD (¥‘ig. 1a8);
situation-1s the' same” for'the c¢ase of a wing with a half-
body--of “PeVolution (Figs 1b and c). In ‘the-case of a wedge-
‘shaped’ fuselage, the' elongation L 1s referred-to the radius
gr the "semi-ocdrcle: that' is equivalent to' the:area:’ T the mid-
he dati of thé table shows-that hypersonic- velocities
‘the linear theory /2 --:4/) at & spe-
] combination of a wedge-shaped-fuselage
ng has ‘& considerably larger wave resistance than in
the case of a half-round fuselage.- This is connected' with

97"
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the character of ‘thé'distiibutionof- pPéssireddver.the con-
sidered systems (Filg.. 8t & wedge-shaped

s NN Sy

The trensition from
half-hody.of power-law form (m<1)
nenes ratlo of; the i g 8
thé' gitality
important here to increase the relative volume
and " the &istribution o ‘delisity and! pressur
system (Fig. 2) is mors: favorable with?respéet: toi:Hedt pro-
tectlon.

Received 28 May 1958.
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Flow Around Bodies by a Non-Ideal Flow
with High Supersonic Velocities

Izvestiya Akademii Nauk SSR, Ot- G. A. Lyubimov
deleniye Tekhnicheskikh Nau, Me-

khanika 4 Mashinostroyeniye /News

of the Academy of Sciences USSR, De-

vartment of Technlcal .Scignces, Mecha-

nics and Machine .Buildin , No. 1, Jan-

Feb,, 1959, pages 173-17 N

A method was recently proposed for solving the pro=-
blem of the flow around flat contours and bodies of revolu-
tion by a gas stream with large supersonic velocities by ex-
pending the solution in a serles with respect to a parame-
ter that characterizes the ratio of the densities in front
of the shoock and behind it /1 -- 3/.

' For'a perfect gas with constant specific heat, such
a parameter can be the quantity' g= (f—i)/(-r—i—i) (where 3’ is
the ratlo of the specific hea.ts)

The solutlons obtained by this method in which only
the first terms of the expansions are retained, are in good
agreement with the ava.ilable exact solutions, and also with
the" experimental data 51ven at Mach numbers”of the incident
stream*on the order of 3 or 4 and above, - :

The solution 1s built up in theé: expa.naion in terms of
the parameter £ basically by bearing in mind that the gas is
considered ideal with a constant ratlio ofs specific heat y .
In reference /3/, it 1s indicated that -the method can be ex-
tended to. Anclude the flow of non-iaeal 3&.3@5 at M =00,

In the present article, the method. of. rererence [1]
is extended to the case of flow about bodies of ‘revolution
and flat cohtours by &' stréam of gas with arbitrary depen-
dence of the internal energy on the pressure and temnera’c.ure.

1.'. The 'he Fundamental Lguations end t their » Solutions. We

ose a’'system of coorain tis, connec ed with the contour -
in“thé stream:in such,a ‘way, “that the’ position ‘of the point M
is determined by its diatance NS along the normal to the sur-

'face of "the body,. and by the leng'bh X. along ‘the arc of the

contour, reckoned from a :cértain’ fixed | ‘point 0 to. the base
of the perpendicular, dronped from M oh the surface of the
contour (Fig. e .. . . R
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Let us also introduce the stream functilon ¥ defined
by the relation |
. V=1 4o os¥—1 A
&4 = pur’ "t dy — oo (.i+—R-/dx>
Then the equatlon of motion of, the! éai- in coordinates
% and ¥ will be of the form /17’ L . ..
oy o » ' 85
'2‘2‘(""*)2' . E-0

Ir=r+ycosa)

NG

[ L2 X Tt
FyRE™REy =" N

where u and v are the velocity componénts along the direc-
tions x 'and y; p, % and S are thé pressuré, density, and en-
tropy of the gas, R is the radalus of the ourvature of the
contour, ,and ¥ has values of one _or two respectively for
flat, bodies or bodies Of revolution, r 1s the.distance of
the polnts from the axis of symmetry, and « is”the angle
between the tangent to the contour of the body and the di-
rection of the incident stream. .

- The solution. of.these equations in the case of flow
around, bodles’ with production of & frontal shock wave should
satlsfy the conditions on the surface of the ‘shock wave,
which in the variables adopted have the form’

ind oo, @
v

R—T-V (m‘s«l—'slna1 _:;_I ”)
P=p" ko (1 —g) Usint B
L M —:U(:in-a.+cnlm—y.' )
< UHyR, > 1yt 2
oA TR = (RS )+ (I — e Ursint 3
Fig. 1 C o )
. Here, p1%, §;, and U are the values of the parameters
of the gas in the incoming-stream, -1 15 the“heat content, y#*
(%) 1s the equation of “the“surface-of the shock wave, B 1is
the angle betiveen’the tangent t0 the surface of the shock
wvave and the direction of the -incident stream, & is the ratio
of thé densities-in: 'front and behind the shock wave which,
in the cdse of a“curvilinear'wave, '1s.a Tunction of x.

The solutions of the system (1) will ‘be sought in the
form of serlea in powers of &£

P=petepm+. ., M=uptun..., p=—p‘—'+p.+....
=8ttt ooy y=lWet...,

Inserting th;a_ae, seriés into the system (1), col
;ggu;:::ﬁ: ce;f Veg\ixa.l order of magnitude, B.‘Zid intgg:z'étggélt:}i:-
yos writ'tenq‘ésrmgns' vq_s. o,bta.in. phe_ fo;l.;l.owing expressions for

) 1
o = ‘ uady 4 pet (3) , S =08 (%)= § (p.. &)
Tt T e, . ¢

)
Queuis € dpy ¢
s

4 (v— 1} i,: cos q]} dy + py* (x)

S ‘;;‘(¢)=S(h+,¢m. ""

Here, p (‘:‘:}-~e§'(y/" uk( ¥ ), pr{(s ol
arbitrary f{mcgioné of t.hgi’l.r eaz(g)pugzéng‘g,( 1<v)«'§111.¢ib':dsheof‘.u(.ff 1’;352-

termined from the- boundar
oo, y conditions. #¥ will be determi-

The boundary conditions should be satlsfied
%é:ecb‘z;d’;:é.ﬁ' whiﬁh i§rthe equation .of the shock 3:vgh?.n
8 X .
strosn 1 inag. the'z’z we pse a sultable numbering of t‘he

)= ptur™

v

- v .,
—‘h"‘:lf‘h'-!-..“:T';‘<I+ny.'#‘+..u)

where y# = y (xg%), Using 'tiﬁ.s 'weZl btal
conditi'gns‘, v?'hie should 1o 'aatiéfiedob aln the following
enter into the solutions at w=y* «by he funetlons that
Po=ed, 2 Y, Me=Ucosa,  pu=pt4pUtsinta
“sinte + pioUR2sin o cos o 5 G0

o deyet
+3ine L L
IR

These relations are the eonsequend'; of the i
L rst
conditions (2) and ‘serve to determine the arbitrary func:};g;:
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which enter into the solution/ when determining the func-
tlons &o%( ) and 6y#*( ¥),1t is convenient to use the spe-
cific Torm of the dependence of the energy of the gas of the
incoming stream on the density and on the pressure, a depen-
dence that can be specified either analytically, or in the
form of tables. The fourth condition (2) is satisfied iden-

tically, owing to the suitable cholicé of the function ¥ *(x).

The last condition of (2) can be written, retaining the
principal 1_'.erms, in the following form

. P R
i(;-r?—)—i (P, 01°) = —:‘U'l‘ﬂ'l U +T‘)
This condition serves to dete’rmine"s(:é). The value

of €(x) can be refined after finding the first approxima-
tion, using the refined value-of the density and pressure,

L Ld

N

|
. ]
|

" 20 T A ” 2
Fig. 2 Fig. 3

' .The fact that the entropy and the heat content are
specified as functions of the temperature and the pressure
makes it necessary to use also the equation of state, tut
does not change the formulas obtained.

2. Flow of Stream of Air Arousd a Cone. By way of
an example, of an applicatlon of the method detailed above,

let us consider the problem of flow of & stream of air around

a cone, In this case, the front of the shock wave is & .
straight line and £ = const. Using solution (3), and the
boundary condition (4) for this case’(+ = 2), we have

us = U'cos a, P=pt F g Utsinda, ety — R

pe=pl° a8 S x [N

e A L. L ] e - -
xamdany s P g e s

A e (A R L

e P

P T a

Flg. 4

Figs, 2 - l: show the results of the calculation for
the case«= 25, T{ = 220, p{ = 0.1 atmos,

The values of & and T, were determined in the caleou=-
latlion from the followlng relations ’

Bmp o T pd i, Y= Uit et )

in which the values of the funotlons §(T,p) and i(T,p) were
taken from tables /4, 6/. . -

' The crosses on the same figures gave the values of
the corresponding quantities; o’btaiqed as a result of the -
nuiierical calculation of the flow around Cones with allow=-
ance for the change in the physical-chemleal properties o
the alr at high temperatures. - -

. These calculations were carried out subject to the -
only assumption that the change in the ratio ¢= cp/cv is |
small in the reglon betwesn the shock wave and the surface
of the cone (we were able to become acqualinted with the re-
sulta of these calculations at the Laboratory of Physics of
Combustion of the Institute of Power Engineering of the A~
cademy of Sclences, USSR). .

_ Fig. 2 shows the dependence of the compression in
the shock wave on the Mach number of the incoming stream..:
At Mach numbers on the order of 20, when the temperature .
behind the shock.wave becomes on the orde. of 3,000° and -
the alr begins to dissociate, the compression in the shock
wave increases more rapidly with increasing Macn number -
than at lower temperatures.

Fig. 3 shows the deﬁendenoe of the angle of half tﬁé
spread of the shock wave, 3, on the Mach number.

- Fig. 4 shows the values of the coefficients of the-
resistance, calculated from the following formula .

Teo=Zapt =1+ 5)ums
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. Nonlinear Problems of Stability of Flat Panels
. at High Supersonlc Speeds

Izvestiye Akakemii Nauk SSR, Ot- V. V. Bolotin
Jeleniye Tekhnichesklkh Nauk, He- | '

khanika i Mashinostroyeniye Z\Iews .

of the Academy of. Sciences USSR, De=

partment of Technical Sciences, Mecha-

nics and Machine Building/, Ne 1, Jan=

Feb., 1959, pages 59~-64, =~

The problems. of stability of plates and shells, placed
in & stream of a compressible gas, were heretofore considered
in the linear formulation /1 -- 5/.  For a subconic stream,
and also-for moderaté supersonic Mach numbers, thls assump-
tion 1s apparently quite justified.. ~However, at large super-
sonic velocities the aerodynamic nonlinearity becomes quite
substantial. As was shown by V. V. Bolotlin /67 in many pro-
blems of theory of aerc-elasticity, when taking into account
the aerodyasmic noalinearity, there are observed solutlons
that differ from the unperturbed one, even at velocitles less
than critical., Among the solutions thus obtained, there are
those that are stable with respeot to sufficiently small dis-
turbances. ’ ) .

These solutions can be realized if an elastic system, swept
at suberitical speeds, is given. a. sufficiently, large disturbance.
Each'real construction has such disturbances (defacts in manufacture,
defurmations, caused by aerodynamic heating, vibrations under the
influsnce ‘of atmospheric turbulence and .other non-stationary factars,
etc.).. Consequently, the critical velocity-as determined by the
mathods ‘of.the linear theory of aeroelasticity turns out to be only
the upper boundary of the critical velocities for real constructions
(similar, for example, to the upper critical pressure in non-linear
theory of elastic shells/7/). .

It is the purpose of this article to investigate the stability
of rectangular plates, swept with large 'supersonic:speeds at a zero
angle of attack, To determine the aerodynamic forces, we use an
asymptotic formula of which, as shown in references/8 —- 9/, is valid
when M'>> 1 . -

N
x—1 v )"’

r=ralt+ 27 o 0]

Here P is the gas pressure on the surface of the plate, peo
is the pressure of the undisturbed gas, v is the normal component
of the velocity of the surface of the plate, is the velocity of
sound for the undisturbed gas, and )¢ is the polytropic exponent.

The linear approximation of formula (1) was used in references/2 -- 5/,
and alsc in many other papers. .

1. Let us consider an elastic plate which is rectangular in
plan and has sides a end b, We asmume that the plate is swept ou both
8ides supersonic stream of gas with unperturbed velocities
directed along the Ox axis and equal to respectively U, and U_ (Fig.
1). We shall assume that ‘the plate is fastened in an absolutely rigid
diaphragm, the plane of which coircides with the plate of the plane.

— The deformationsof the plateare described by the following
aq ong
202, _ I e 0 P 20w
DV = SaTE t B ar — 2 way wway Y
&)
| Ctoap (0% \2_ 3% o
V= (o) ~ 5 e

where w (x,y,t) is the normal flexure and @ (x,y,t) is a funotion that
1s connected with the fmx stresses in the mean surface by the follow-

=% a
x=F5 N,—_-‘,—’f;, /V,,=—."%’i‘.’. @y

ing relations

where D is the cylindrical stiffness, h the thickness of the plate,
E the modulus of elasticity,.and v the Poisaon cosfficient.

The sii;es of;.:he plate will be considered to be freely supported
P Kid o

W= +va’,=o lz =0, x =aj, w=$+v$=0 w=0,y=b) (k)
and, 1n adc.ht:‘.un, we assume that they are elastioally fixed relative
to axial displ:cements. This makes it possible to consider a con-
tinuous tran: on from & plate with the freely moving edges to
a pla‘f:e_uhose gov are sintlonary. Let cy and cy be the stiffueza
coeffic’en%n ~f =he elasiic couplings, We shall specify that the
farce boundary corditloas on the edges be satisfied "in the mean' »

_ B ﬁ, = — By, ﬁu = '—'-‘:In ﬁ,, =0 5)

where Ny, @, and Nyy are the mean ;trasses on the ed, D, A,
are the mean displacements of the edges. o seen mdy

For a plate subject to oucillations. the eXpress
normal load component has the form ’ i Lo fer the

Pw
g = — poh T — 2phe 32+ 8p (B)
7
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Here is the density of the material of the plate,
damping ccei‘is?i.oisnt, Ap the excess pressure of the gas. This pressure
will be calculated using formula (1). If the plate is suept on one
8idé, then AP = fw ~D4 , Where p, 'is determined for the velocity
’ G g By B
o vom Gt Upgp =l
(£t was Shown, “in particular, by Hedgepet?s/ that it is ;_)osslgle_iz?‘ y
Teglect the effect of non-statiorarity at large supersonic veloclties/.
Thed " G kil a0 xkd g 7
“P="‘P°°[MT;+5T”‘(3;} A R N

where M=Us fa,is the Mach number for the unper.tu?bed flow.

Bl For the case when the plate is swept on both sides at equal
velocities Uyp= U-, the formula for-the excess pressure bes:omeg
simpler, since the serises will contain only odd powers of w/ Ox

bp = — rpu ML+ 2 4 (]+-] @

Thus, the problem reduces to an investigation of a system of
nonlinear .equations (2) in the case when the function g is determined
by expressions (6), (7}, and (8), and subjsct to boundary conditions
(4) and (5). A particvlar case of this problem is the linear sdgx
boundary gproblem, desciibad by the equation .

DUTh & b - Zpghe G2 - xposM G =0
s {4) or other linear aocmogensous conditions,
- vascs of supported mounting. In this xxxx
vcion, the problem w:s considered in many
=/, vwhich it wags shown that ab certain sufficlently
large valigs of M-:Mg, *hs irivial solution w=0 becomes unstable
with —ospech no swall 2istirbances, Physically this corresponds .
to the ocevrreace of "ranel flutter."

- It will be shown below that under msmex certain conditions
the ncnlinear ‘system has solutions other than trivial and also at
M < My. This means that oscillations of the "panel flutter" type
can occur also at M < My, if the panels are subjected to a
suitable initial disturbance, We shall make an estimate of the
arder of these disturbances below.

2. We shall seek a solution in the farm of a series that
satisfies the boundery conditions %) . )

m W s
wie 0= 3, 3 anOsiniEainE
g1kt B -

1 2014/03/14 : CIA-RDP81-01043R004200140002-4

wjt?reAq x ére the sougnt functions of time

}2\:0 uhg se.cond equatlion of (2), we obtain.thgnls‘:ﬁgélggn(zf)
{hztegatifi les the boundary conditions (5). de then insert
l;imm,xpre‘)fionhI'o‘.r‘ £ (which depends on the unknown func-
$ions d4yx &8 parameters) into the first equation, Applying
e Galérkin method to this equatlion, we arrive at systems
of ordinary differential equations v

Prie 5 e : /
i 2 b ot fieGu o om ) =0 (] ) oo
Here @y are the frequencies of "th
R e small natural -
gjl.l.%z.tio’zrz‘s of .the plate, and fj' are certain nonlinea;‘ I‘ug:-
u"*.: .. The sy stem (10) can be fnvestigated further elther
5ing known approximate methods, or elge by solving it zvith

the aid b 1
he %Gigw?lectronic computers. We shall employ both me-

An analysls of the correspondi. 11
_ ) 3. 1linear probl
{i/ that the flutter motion near M = ?RJ: can be gescrigeghgzs
T'lrst approximation by an exoression of the tyve

€, Y, 1) == g, (¢) sin Z iy L g a0 sin sinZL (1)

Introduning prrtial linear freq

: v & T quencies ‘4 and «, ar

the d‘imgnsipnm:._ variables ==z, qsh=rz, :,,//,:1- nwe obg;.u'i
for the casz ol flow ua ons side only . - -

’ 1T N N
Hordntater oo qua )+ w5 (st + bz +

F Lz (enz® + ezt = 0 (12)

La2e dsv..ue he o P
:nless Ume?are differentiation with respect

R CE N /'g=;—::‘(x~4 "
. 203 oo+ as3 ‘
o= Laaty TUE By
41+ ah - Siat

_a . at
A +aaff ¥ Ly v
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If the plate is swept on both sides at equal velocities, the
systen (12) assumes a simpler form

PR '—,; 2"+ & + K [— o0+ W (st -+ bun')] +
’ + Lty (enzyt + yay2s) = 0 3
="+ ':" 2’ + 1%+ uk [% Sk w5 (bed® + L'n"':‘)] +
A+ Lzy (enzy® 4 c0a35") = 0
whixe where. K has a value twice as large as before.

We note that for the critical valus A% in the foregoing approxi-
mation we obtain the simple Tormula
’ =8y=1 _yEs oy (14)
b= ey Ve 08

‘ + tem (13) im
3. MWe.sock an approximate solution of *he sys
among the c.ass cf periodic motions with finite amplitudes

(15)

! .= Acosbr+ Bsinft 4., 23 =Ccoslgt .-+

- ) . ts
Hs:e 4, E, C, and @ ave certain unkrown constants; the do
stand for !f/hs’ta?ms,’that conialn harmonics. We consider the steady-
state sslf--oscilletion mode, and therefore tas initial phase is of
1o iwpertang:. Tnserting (1) 4nto (13) and neglesting the terms
that contalh warmonics, we obtain the system of equations
(1—oyq+ 20 p £uKC 4 pKC [~; by (384 B 4 & h,p] +
+ LA [% cu(A+ BY+ 3 c,,c=] =0
(1 —6)B— L} 4 -L 3K ABCb,, +LBH (A )2 r,,("] =0
= B
(¥ —6)C + T ukA 2 wKA [% by (A® + B?) + %I:uC’J + (16)
+Ic f‘TQ,(sAF.J, ny - i"-r,_._.(@l =0

" i o
C+ 3ukB + Kl [; by (12 4 B+ D ] tHLABC =0

Declassified in Part -
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An approximation solution of this system can be obs.
tained hy.agsuming that ghe damping is sufficiently.small. .-
Then B2 <xA2, .C ~a, 81 <<A, and 52Bac 4. Using .the :first
two.and the, last equation, we can express A, B, and & in . .-
term of C, after which, inserting the found values into the
third equation, we obtain the resolving equation A(C) = 0,
the roots of which are obtained .graphically. Fig, 2 shows
the behavior of the function A(C/A) for cylindrical flexure
at M o4y, For the.calculations the values taken-were K =.
0.2, § =8y =0.05 and ac=rth. At these values we get:

Al = 0BT, .

The results of the calculations are shown in Fig. 3.
The most-interesting result of  these calculations is the. fact
that at suffioclently small:Bx (in the example consldered ‘this
occurs already at fBx =.0.4), the steady state motion 18 pos~:
sible ata <4y, This is seen ‘already in Fig, 2, where the.
branch of ‘the equation A(C/A) ‘goes into the upper half plane
at values By 20,4, The quéstion of the stability of the '~
obtained “solutions 'was not- considered theoretically;’ -
ver, from the shape of the curves at Bx = 0.46“, in:
with the results for a nonlinear system with 10 of'f.
1t 1s possible -t6 corclude that these solutions ar

doubtedly, in the reglon 4w, the physical system has also a
stable periodic motion, due-to'all kinds of nonlinearities,
which appear.at large displacements ‘(phenomena of breaks“in- -
the stream, 'sharp-.increase - in the dissipation of energy whe
going out .of the elastic stage of work of the material, -etc
These .motions could not -be obtalned from equations-of ‘type
(12) and (13). . The.unstable: solutions thus obtained are-never-
theless .of. some, value, since they .indicate the order of ‘the
disturbances, ecessary in .order to-cause.intense oscillations
of the panel he:most- sensitive to the initial -disturbances-
are panels w freely displaced edges (@* = 0),:.Since the
greatest flexure of the plate has an order of magnitude Ah, it
is seen from,Fig., 3 that 4n order for dangerous.oscillations
to occur at uz 0.94%, it 1s enough to.have a disturbance .on.::.
T 01, 0,5 h,  If 4= 0.84s, the order of-the necessary:
initial disturbance increasés to h.. When 4= 0.5«’2,_. it is.ne-
cessary to have an_ initial disturbance of 2.5, - A8 the stiff-
ness of the’ longitudinal. couplings. i ! y e sensitivity.
of the panel to. flutter disturban al velocities
deminishes rapidly, = , .combine - 0] @ panel.as.&-:
structural element app  to” favorable as.regards.its, sts«
bility under large disturbances. ‘If ‘the disturbances are still
sufficlently small, as it is assumed in linear theory, the
flutter occurs in the vicinity
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of )(—}’-u.' At. sma]lﬂ we shall have "stiff" excitation of the
oscillations with rnpfd increase of ‘the smplitide to large veles. For
;panels, ‘the edges of which are fastened as regards actual displace-
ments, to the contrary; a alow inareaae will occur in the amplitude in
the. post critical region. .
Amlcgoup calculationa were mads alao for a squara panel

under other principal parameters of the same order of magnitude.
There® is do’qualitative difference batuaen -the raaulta obtained and
those given-above for a panél of infinite spaN. K

4, To check the obtained approximate solutions, and also to
clarii‘y tbs character of their stability, the systems of Eqa.” (12) .
and(13) Were solved on an electronic computer M¥-2 (this work was
carried: ‘out in the labaratory of Matbsmatical Machines of the
Mosdow Power-’ Insﬂtute with N,I, Chelnokov' and Yu. R, Shneyder
partic:tpqting) The solution was carried out for & cylindrical
flexura, both in the case of a two-sldéd and single-sided flow. Ths
vnluu o!' ‘the paruster}«\-(i a.,:the reduced Mach nud:er) and..of the

%, Mhich characterises the ngm.tlﬂe of the elastic non-~
re varied. The problem consisted of ascertaining the
68 *ie m port\n‘bed .soluticns. for. different init:lnl
For all cases it 'was assumed that 3!y (0)=2'2(0)=0,
5 ofa, (0) and 33 (0) wers changed in such a way,: that
ﬁ tlln limit was satlbllshsd between the dunpo and

lL_!x

at g,iva ,gd
ﬁ increasing solutions. -, )

Cun E lhous the ’boundnrlea of tha‘stnhmty regions for the
oase px case of tworsided flow.. The region-of stability of
the kivhl olution was located below the origin; the limits of
the, three other quadrants of the plane z;(0), 35 (0)
It is seen from the curve .that upon approaching
.l iticll value }A;s 0.372, the dimensiochs.of the stability reglon
diminiah, and-in_the . 1imi: case thin region vanishes. The same -
rye ;shows the:points z7 .(0) =4, & (0)——0, corresponding to the’
valuesof the. approximate aolution ( 6) at«r_’—- 0 (thaae pdate are
danoted by cirales) .

I I-‘.tgs. 5: nnd 6. shovuitypical aolut.ions near’ the boundnry of the
aubility rs? . Fig, 5 ¢orresponds ‘to a cue}&lD.S, -3 =0, Hben
35" (0)==-zy (0)%= 115, the initial distwbancs, although slow, =
nevertheless. daapmackkii-is-damped with time’, ~although - aldu].y The

- small: inorease in:the initialf ‘disturbance’ to z] (0)— ~z56 (0) =
1,22 Jeads to-a p ‘éhange “in’ the ‘character ‘of the ‘oscillations:
ve*Bavevflutter motion with rnpidly inoreasing amplitudes. An analo-
gous xhehavirm the ‘systen i3 obtained whenm=0,15 (Fig.‘6). The
chnngaovsr ’ﬁ' hbility‘to stabi.uty es place 'hare ds’

RDP81-01043R00420014000.

initial disturbance increases from valuss z, (0)= ~z,.(0)= +
valuss 2y (0) = -z, (0) = 4l v 1 )= ~23-(0)= 4.3 to

Recaived 18 November 1.958.
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. Supersonic Flow Around Flat Quasitriangular
Wings of Small Length

Izvestiva Akademij Nauk SSR, Ot- P, 0.
delenive Tekhnicheskilth Nauk, Me-

khanlka 1 Mashinostroyeniye /News

of the Acsdemy of Sciences USSR, De-

partment - . Téchnlcal Sclences, Mecha~-

nics and . -aine Bullding/; No. 3, May=
June,”{iosco_w, pagesyzoz-zos. ' .

In Werepence /17, there 1s given d method of finding
the velocity potential in the second ‘approximation in super-
sonic flow over slender bodles. We qbail"'use this method to
consider-tHe flow over plane quasi-triahgular wings of small
elongation. The compled potential of "the’ first & proxima-
tion f£or -such wings 1is written, afterreference 2/, in the

following form -

Zheludev

e ep=aEVEFIH D Cm
- YHerb,-28 (%) is the spread’of the wing, the plus sign
pertains to the upper halfl plane, and' the minus sign to the
lower Half-planée. ) !
.-, - 'Since -we- seek a real solution near the surface of the
wing, we expand (1) in serles of positive powers of .%

g

g_([):—_l:u(:)[i 4——1{ (7).

This series converges inside the circle 1&|<a(a), and
terms in higher powers of &/a(z) are discarded as being too
amall. Then the velocity potential of first approximation
is written in the form

”

w:tuu(x)[l-i- -+ 75 cmZO]-—-:rrosO

The boundary condition for the velocity potential of

seoond approximation is written in the form
99y (4 A
'Ev‘=(—r‘ 36)..:,.,

After calculating the derivatives of @, with res~
pect to %, r, and 6, and integrating the equation by the me
thod of iteration Eq. (3.5) of reference /1/, we obtain the
particular solution in the following form

.
~zerni+ 5] N

Upper half plane:

o i G e

T ——
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1. - - .
o' = e {T att [(M“l —1) (a' (z)— a(z)a (6::(—’)2, 1 (z) g ) +

a. fe'(zx)—a a'(x) - af?
+ 5t (ST i R o) -

S o —term+ Mm'.—%-]_

R a(x)e’ (z)—2a"% () .. . 1
- [(Mm‘—'.)'—z'—’* —’Mm’u‘] ;'?—r) co820 =
ala’ (z) —aj 1 ‘(.
+ MF R r cons — T,vmlfa—:(—,f’!,-} ™
Lower half plane:
L - . “ tx) — 20
P =|le{——‘-ggg [(“’au"‘")((" (x) — .ﬂ_“(sf‘l‘.(_‘_,w 5 )

a (a'(x)+d a'(x) as? \ Y
+v o (Cea e W@ S taE e J}=

1 |
e ffre— a4 M | -
.

VR

alz)a” () — 20" (x)
e o

At fonsn

Ty ale(x) R g .
mp HEEEA g B LY gy

o)

. Since the functions (3), and (4) do not satisfy the
boundary condition (2), we add tc these the following harmo-
nic functions: R , o :

Upper pl'ahq;” .
1|+'=.~.—-u'u’(:)uoso+-l-"i-_a’|l'(1)(ﬁlb’+2)-ll“’¢] u::‘) o8 28 e

Lower half planes’
;,_‘-ain'(x)rcqﬁl—l_“u‘[a' (_z)(M;,,’+:1J+4"m’¢|-—-.;z’_) cad (8
The functions (5) =-:(6) were obtained by represent-
ing them in the' form of a series- A v rep *
@

e inr = 2 1 (a,*r" cosnd + b,*r" sin a0) + €1 ()

e /1/.

, Thus, the second-approximation 1is written as the sum *
« - @'+a" in the _fo;‘gn:

as is done in refei

Upper half plane:
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L] ' k] N a* .z, a
R R e 'BIBLIOGRAPRY
_'%[(M,,’~l)'—-———' Qe )20y, :.1] rcos20
z B ) - 3 :
aa’ (@) | H L. Zheludsv, P; I. Supersonic Flovw of Feathared and Unfeathered Slender
- Bodies of Revolution, Izve AN SSSR, OTN, No. 9, 1958.

Lmg clu;,(x(l)—- ul'\_mn__;_ NS
) con8+ L at e’ (e} 415 2 r " : tited Bod | och .
—~ 6%’ () co8 8 + 11 a?[a (,? (Mos? + D) — Mo ta) gy (B : 2. Supersonic’ Flow Past Slender Pointed es, Quart:s Ji Mechs Appl:
i . ¢ st Ve 2, 75, 1949

Hower half plane:

. .
D {[(Mm' —)ar () - M} :;x)]—

% [(‘"u' 1y _‘.’_(")"‘—’)_'—z'iﬂ _ J,,w,,J n.’_(:) s+

‘(z) + 1 aa’
”—f,g&,—“' reosd 4+ 5 M. :, (f)') ,,} +
-

a*(x)

M

“+ a%a (x) 7 €080 — 13 @ [a’ (z) (Mo, + 2) + M 3a] = cos 30 ®)
Let us derive an expression for the pressure coeffi-
clent ¢, on a triangular wing. For such a wing, a(x) =
x/tgx, ghere Xis the sweep angle relative to the leading ed-
ges, - In the first approximation, ¢p 1s expressed in the form

9y 4ax
=4 = Va5
) Here z 1is the coordinate along the spread of the wing,
and after calculablng the derivatives with respect to X, r,
and we obtain from (3.11)/1/ an expression for the pressu-
re coefficient in the second approximation, in the following
form : N

9

o {ax Mt .
P g Veac ag )t gy VIO — (g PP

z» 2
+otex S — 1+ M B

. UG 4ad 1 dieghy
M+ xV‘Funﬁu‘}"‘%x("-* o ) “

Expression (10), like the first .-a.pproximation (9),
glves infinite pressure peaks on the leading edges of the
wing, 1l.e., 1t can be used to calculate the pressure on the
wing when z # a(x). -

Received 10 December 1958,
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1. It is known that in many important cases superso-
nic flow of gas 1is described by a system of two quasi-linear
first-order partial aifferential equations of the hyperbolic
type for two functions of two independent variables. Such
cases include, for example, unsteady isentropic flow == ho-
mogeneous and spherical, steady state flat irrotational 1isen-
tropic flow, steady stete three dimensional flow with axial
eymmetry, etc... /1/.

If we denote the .ndependent variables by x, ¥y, and
the sought functlions by u(x,y), and v(x,y), such & system
can be written .

Li(x, 9 % ¥ty ¥y B o) =0, La(x, ¥ & ¥, Uy Yy U ¥y) =0 wn

where Lj and Lp are linear functlons with respect to the de-
rivatives.

One of the methods of solving the problems of gas dy-
namics is based on the linearization of the system (1.1),
which is attained either by transforming this system into an
equivalent linear system, or by replacing it by an approxima=
te linear system.

Let the system (1.1) be reduced, by some method or o=
ther, to & linear system; then, retalning the previous desi-
gnations for the independent variables and the sought fune-
fions and assuming the ordinary conditions of solvability of
the linear system are satisiied,the system can be solved with
respect to the derivatives vx and vy (or with respect to the
derivatives uy and uy) and written Xn the following form

vy =ale, 1 y 4, 0

(.3
By = (2, Y)vt mlx, v, ¥, 4y, 40

where §, m are linear functlons of u, ug, Uye I the coef-
ficients a(x,¥y), b(x,y), in (1.2) satisfy tie conditlon

»

N ¢

117

then the system (1.2) can be replaced by one equivalent 1li-
near differential equatlon of second order and of the hyper-
bolic type, for the function u (or for the.functlon v), which,
after transformation to the chapacteristic coordinates £ 'and
n; will have the form. . . . .

:5"'”.. = A, 1;7.:._:2:&: mg,m% HCE W+ NE (]

Further simplification of Eq. (2.3), if at all possible, ocan

be only by transforming the sought function.

We shall ocall the linear hyperbolic second-arder equation for
the function w compact, and we shall call the function w a compact
function, if out of all the derivatives of first and second order
it contains cnly a mixed derivative, i.e., it has the form

e -
I L ) (1.5)

Eq. (1.4, can be converted to the form (1.5), if its cosffiocients
of the first derivatives satisfy the condition :

- 44 B "
® R

Here the compact function w is axkxak determined from the relations
weeoxp/—\Adq) OT w =cu exp (—\ B4E) It}

if @41 =B [0, 0, or else from the relation
’ .rzmcxp{,_(,q-ln-—(lms/ .8

if  @4/0%--0B/d7n=0,0, where c is an arbitrary constant.

In particular if the coefficients A and B in Eq. (1.4) are
either constant or satisfy the conditions A=A (%), B=B (i), such
an equation is transformed into a compact equation.

Eq. (1.4), the coefficients of wbich satisfy condition (1.6)
will henceforth be callad reducible, and the equivalent system (1.2)
will be called the reducible system.

Tt will be shoin below that different linearized equations of
gas dynamics are reducible and are therefare transformable into coa~
pact equations.

2. a) Suparsonic unidimensional unsteady isentropic flow of

gas is described by the following hyperboldic quasi-linear system of
equations :

118
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. vihere all the symbols have the usual meaning. If we interchangs the

roles of the independent yarisbles x,t and functions u, r, and ir
the representative Sunctlons are subjeoted not only to the ordinary

conditions of continuity and differentiability but to the supplementary

condition - Dt
(3, 1
Dww) #0

Then the system (2.1) is transformed into the following equivaleat
linear system

Ty —uty i pty - 0, 2, —ut, + (0}t =20 (2.2)

Condition (1.3) far the system (2.2) 1s satisfied and con-
sequently the system can be replaced by one equivalent equation of
second order. .

Introducing the function §(u, ), which is connected with the
x,t by the following relations/%/

. El
o, z—ul, m,—.—.—-.P_l

and also introducing a new variable S instead of Vand the following
symbols

°
s~»§idp. p o= ap™s dp _.a
e e

we obtain an equation for the function £(u,s), which after belng

transformed to characteristic coordinates, determined from the

relations
. _ - S—u, He-Stu

becomeé the well known Euler-Polsson-Darboux equation

k

@,
.E"+£+v:

: Condition (1.6} is satisfled for Eq. (2.3), and there-
-.fore, putting in accordance with (1.7)

w -@exp&ﬁ%

we chtiin after trangformtion ) ’
I ('
oE W
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ve note that transformation of Bq. (2.3) to the compact form
displays the known case of its integrability in
final form when X =l. :

b). The differential eguations of plane vortex-free steady state
jgantropic suparsonic flow of gas,as is known, can be written
[T AN 9%, (2.5
XS]
whereq andy are respactively’ the potential and the stream function.
This system is 14nesrized if the wyariables X,y are replaced by the
variables fand S, whereB is the angle batween the velocity vector q
and the ¥ axis, end § 35 determined from the relation
as Ly
a7 7 ‘ el
and then the system (2.5) {8 transformed into the linear squivalent
syaten
B WY X i
Koae Y

where X depends only on §, and wbere ¢ denotes the velocity of sound.

a0 _yK LR 30 2.6)
ay ¢

o as’ s

Condition (1.3} is satisfied for the system (2.6),
and therefors this system is squivalent to ons equation for the
function (P, or else Tor the function ¥. After transformation to
characteristic cocrdinates § and 7which we detexrmine from the
relations S §4yand € =Y —-g , these equations become

2o
3
,3"5'%’” _r(s}(‘;{.+ ) (re=ren =1 K] (2]

Each of Egs. (2.7) and (2.8)1s reducible.Thus, for sxample,
assuming according o (1.7) .

wa= epexp{ (& WL,

we cbtain a compact equation corresponding to Eq. (2.8)
w1 aF
=Pt = 2.9,
FEom (‘fﬁn,," @9

Putting F2 +Q F/ ¥y =0 and integrating Eq. (2.9) awbject to
the condition 3 F/bf:)l?/37, we find the integral of Eq. (2.8)

120
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y= -g-j(—-nu-(a + il

(where £ (§),A £ - ssritrary functions). This integral vas

£

found by a i anes kod in refersace/3/s
) The equets.n vor the stream functionYconsidered by -
L.I. Sedov/2/ 7,?"“9;7':+b’%+cm
YRR Y. BN E e e 2 (2.10)
Bitpen(s 1) 5

in the supersonic regic;n at velooities oloss to the velocity of sound, i ’?;:i" b, and ¢ are constants, is transfarsed into the compact
is also reducible if it is transformed to variables f, 7, which are 1 juation R
determined from the formulas | .
! I ekt
g ! T om .
T CIEE . . "
Emt—ar. p=teax ‘.wzunxp[_;:’.({-(-»)]
! a

2 e bY — 4a¥cES0

Tha compect equntion—con'aaponding to Eq. (2.10) will have the

oo A7 5 e (@11
] sl (e—m"-]"

94N
3 = ——
o ( %e )

0 = o4 (E— Wk oxp [; (= v.)"-] .

d) The Euler-Tricoal equation
i #_ 2o @42)
7
at z > 0, after being 4ranaformed to the characteristic variables
Em0—tashy, =0+t

correspondsto the following compact equation
M 5w
gEom BE—
if the compact function is put equal to w=c (g..wl/é,/, .

e) It is also possible to subject to an analogous trans-
formation certain other equatlons, which are encountered both in gas
dynamics and in other divisions of matbematical physics. It is known,
for example, that the telegraphy equation

121
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Estimation of the Permissible Irregularity of
Rotation of a Reversible Table for Testing
Floated Integrating Gyroscopes for Drift

Izvestiya Akademii Nauk SSR, Ot- G. A. Slomyanskiy
deleniye Tekhnicheskikh Nauk,; M

Kkha) 2 shi itroyeniye

57 the Academy of Sciences USSR, De=-

partment of Technical Scignces, Mecha-

nics and Machine Build .+ No. 3, May-

June, Moscow, pages 211-212,

The angular drift velocity of a floated integrating gyroscope,

@3, is called the absolute angular velocity, with which it is
necessary to rotate the instrument about its input axls (measuring
axis) y, in order to maintain the output signal of the gyroscope, the
voltage U , constant in the absence of current in the control winding
of the transmitter (torqus transducer). In other words, this is the
absolute angular velocity, with which it is necessary to rotate the
instrument about its input axis y, in order to produce a gyroscopic
torque equal in magnitude and opposite in direction to the noise
torque M, acting on a fleat gyro unit about its axis of rotation x.
Tests for drift, i.e., the determination of the angular drift velccity,
is carried out on a special rotery table/l/, shown schematically iathe
figure. Located in housing 1 is a motor that drives shaft 2, to which
is attached platform 3. By inclining the housing 1 about its suspension
axis § s it is possible to set the shaft 2 vertically, horizontally,
or at some other angle to the hoarizontal.

Shaft 2 is strictly perpendicular to the axis f. The axis E,

in one method of testing, is placed perpendicular to the plane of the
meridian, and in another method, it is placed in the plane of the meri-
dian, Fastened on platform 3 is the tested float integrating gyroscope
4. Its input axis y is placed along or parallel to the axis of rota-
tion of shaft 2, while the x axis is placed in a plane perpsndicular to
shaft 2, In some tests this axis occupies a horizontal position and in
others a vertical one.

The axis 20 is perpendicular to the axés x and y. Deviations of
the axes of the gyroscope figure z from the axis zp (the angle B) can
be only small, In certain cases tests for drift are made with the
instrument occupying such a position, at which it is subjected to a
transfer 8NgUlar velocity &, equal to the projection of the angular
velocity of the daily rotation of the earth on the y axis.* In other

* All the angular velocities around the y axis will be con-
sidered positive if the direction of their vectors coincides with the
positive direction of the y axis.
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cases the instrument is placed in such a way, that the angular velo-
city of the daily rotation of the earth does’not ad‘i‘egt it, e

In the presence of a torque M and an angular velocity &, in

tests for drift, there appears a voltage U_ at the output of t
angle transducer 5 of the gyroscope. This voltage is applied to ampli~
fier 6, which feeds the drive motar of shaft 2.  Ths motor ‘is actuated
and starts rotating the platform 3 with a certain relative angular
velocity ¢s3. Were the torque M to be equal to 0, and were the depen=-
dence of the velocity 3 on the voltage U_ to be strictly proportional,
then we would have the squality )= -0, at Kyzconst (see  figure),
Under the same conditions, but with M ye 0, the équality @ = - )
will not hold. In this case the absolute angular velocity Ulz—
©2+U3 will indeed be the sought drift velocity of the floated inte-
grating gyroscops, due to the presence of a torqus M (when Wy =0 we
have w) =), However, if the setup is such that when amplifier 6
is disconnected from the angle transducer 5 and if a certain voltage
Uy =const is applied to the input of the amplifier, then the platfornm
3 rotates unevenly, then the drift velocity'on it will be determined
with a certain relative error £ . Let us calculate what the permiasible
value of unevenness in platform rotation should be at U4 =oconst, in
arder for €not to exceed a certain specified valus. Let us denote by

the -actual valus of the relative angular velocity of the platforn
at” U= const; by W=l (Ky=oonst) we denote the ideal valus of
the relative anguler velocity of the platfarm; letB =(a), - ! )/
be the relative errar of the relative angular velocity of” the pﬁtfoth
or, in other words, the unevennsss in rotation of the platform. ’

Neglecting inertia, “we assume that

Wy m — Kl (1 4 By, 3in W)
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5 maximum unevenness
In thias case 5=8 :Lm)t, whare & mx 18 the
in rotation of the pla’r,fg;f whioh will be assumed to be a amall quantity. . L e
w ongidering that in drift ‘tests wz::ux: 15°f1n“nhd"laauning
Assuning the gyroscope nct to have any inertia, we can write its . 1= 0%01 /hr,' Ve can rea sos that B Ecooptente eoararioaioE
squstion in the form | otary table the product U7 sho.ld be considerably less than uaity.

' 4 Sonsequently; we
%‘l}'-‘:”l"l_*'“""' ] 2 3 quently, wé can write “(forwz ¥ 0)

X (&) - .
wher's H 1s the intrinsic (kinetlc)-téique of the gyroscops, Ky the 4G
specific damping torque in g-cm/(1/sec); K) the slope of the K

angle~transducer chamateristic in v/f'l_d.

\ . . ) Received 6 February 1959
Gonbintng (1) and (2), and;bearing in mind that WOy = W/H and ] T B )
U_= U4y , we get : e ’

. L[ T coswt
Ty + oy = — (wy—) %y, {

YT COMVE  yy  (tagt ez — oy} 30 vr] 3)
1 Spau SINVE

, — o . BIBLIOGRAPEY
whore R )'-,"‘"51 S T e y
TR, » ~ Slonimskly, G. Priyadiloy Yu. ¥, Poplavkovyye giroskopi i iikh
5 ) Lth watt primetériye (Fioatied Gyroscopes and Their Applications), Oboron-
Neglecting in Eq. (3) the teram siny't compared v ¥ ¥ gis, 19887 A o
in view of the smallness of @ gax, ard :ﬁfng use of expansion i?th e : . ,
povers of small parameter/2/ for integration of this cquntion,h: tead 2. Krylov,A. W _}l.k?l.’;i o: priblishennykh. yychisleniyakh (Lectures on
‘the small parameter being in our case 8 may» W8 find that in the steady ' " ppr & Caleul + L. p 344, 1983,
state ) - ’ L

T
..,:}-(..,-u.)[i-q» .Il_:'_‘a'—’_T(cuvr-rvTﬂmn] Q]

The relative error in the determinatiocn of the drift is €=( ﬂ)‘l -
03,)/5 1, where @ 1= +W_ is the measwed velus of the angular
dr}.ft velocity. Us}ng gxpraisicn (4), ve get

Y b T R
) e T sin
x-n(l .')Tm;(uuvt-y 3inw)

. : by its.
From this, Teplacing the expression in the last bracket by
maximum valus, '_m’a ‘obtain the following formula for an estimate of the
maximum permissible unevenness in platform rotation

A TETE 5
Bon T = el . 2
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A11-Union Conferance on Static Stability of
Turbetiaghinery

Izvestiys Akaderiii Neuk SSR, Of< Ye. I. Boldyrev
deleniye Tekhnicheskikh Nauk Me-

khanike 1 Mashinosgtroyeniyé [News

of the Academy of S.iences USSR Mébha--

nics end Machine Building] No. 3 HAY-

June Moscow pages 213-214.

From 9 through 12 February 1959, there wes held in Leningrad an
All-Union Con.erence on Problems of Static Strength of Turbine Machine~-
ry, called together by the Commission on Strength o0.Gas Turbines at the
Institute o:Mechanics Acsdemy of Seiences USSR (Chairmen of Commission
Academician Yu. N, Bebotnov) and by the Leningrad Technicel Council on T
Turbine Construction.

Participating in the conference were approximately 250 represen-
tatives of the scientific institutions, higher institutions of learning,
and plants of Moscow, Leningrad, Kiev, Khar'kov, Chelyabinsk, Novosi-
birsk, and other cities. Twenty-two papers vere delivered.

The paper by V. P. BRabinovich (Central Scientific Research Ins-
titute of Technology and Machinery) and Yu. N. Rabotnov (Institute of
Hydrodynamics, Academy of Sclences USSR) "Strength of Turbine Disks
Under Conditions of Creep", was devoted to the results of an investiga-
tion of the influence of plastic properties of materials on strength of
the turbine disk, operating under creep conditions.

As a result of the investigations it has been shown that as the
plasticity of the material is decreased, the deformation ef the disk
is decreased, and this decrease is greater than in specimens., There is
also a change in the character of their failure, a reduction in tae
strength of the disk, and the disk design ‘based on mean stresses becomes
unreliable.

Along with this, for any plasticity (within the limits of the in-
vestigations) of the material and for any character of failure,. the con-
dition G,z 9igng for the failure of the disk remains in force, i.e., the
disk fails when the maximum stress reaches the long-term ultimate strength.

For any plasticity of the material, the stresses and deformattons
of the disks are relisbly determined from the aging theory as formulated
by Yu. N. Babotnov.

It is shown that a reduction in the strength of the disks with
- decreasing plasticity is connected with the reduction in the degree of
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redistribution of the stresses.

A.D, Kovalenko (Institute of Structural Mechanics, Acsdemy of

. Seiences Ukrainian S SR ), in a paper "Thermal Stresses in a Disk

of" Symmetrical Profile in'a Three-Dimensional Temperature Field"
considered the problem of thermal stresses in a thin disk of radially-
variable stiffness, in the case of a three-dimensioral temperature
field, when the temperature varies ‘along the radius, periphery, and
thickness of the disk, . It is assumed here that the ordinary process
of non-stationary heat exchange takes place, at which the rate of
change‘ of temperature is small compared with the velocity of sound.

Ths introduction of generalized thermal deformations has made
it possible to subdivide this problem into two: the problem
of the asymmetrical thermal elongation (concering the plane-stressed
s:ﬂ:; ) gf the disk and the problem of the asymmetrical thermel flexure
o: he disk,

) Tos a6 of & stltic-rggomtrical analogy has pernitﬁd an in-
vestigetion of only one resolving squation instead of the two’ that
descsibe the problems of elongation and bending of the disk.

Analytical solutions have been found in hypergeometric functions
for a wide class of disk profiles.

Ye. R. Flotkin (All-Union Heat Engineering Institute) in a paper
"Investigation of the Strength of an Experimental Diaphragm of Walded
Construction with Reinfaroing Ribs" has reported the results of an
experimental investigation of the strength of a welded diaphragm with
narrow blades and reinforcing ribs. .

Ya, A. Shustorovich (Leningrad Metsl Plant) lectured on the
topic “Calculation of Disks in Accordance with Their Bearing Ability.*

. B, T, "horr (Gentrzl Scientific Research Institute of Alrcraft
Engines imeni #.I, Esr.zov) in a paper "Calculation of Turbine Parts
for Creep in Variable Temperature" has developed & method for calcula-
ting turbine parts for creep under variable temperature.

) The péper by A.V. Amel'yanchik (centi-al Scientifio Research
I{xstinm of Aircraft Engines imeni P.I., Baranov) was devoted to
the calculation of disks and shells using mathematical computers.

_The paper by Ye. I. Molchanov (All-lUnion Heat Engineering
Institute) "Investigation of Temperature Fields in Operating Blades
of Gas Turbines" was devoted to a procedure of calculation of tempera-
ture fields, occwring in rotors of gas turbines; these calculations

128

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/03/14 : CIA-RDP81-01043R004200140002-4



eclassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2014/03/14 : CIA-RDP81-01043R004200140002-4

were carried out with a hydraulic integrator under non-stationary
conditions, '

I, A. Birger (Central Scientific Institute for Aviation Engines
imeni P.I. Baratiov) in a paper "Mithod of Variable Parameters of Elasti-
city in Problems of the Theaty ‘of Plasticity" developed an approxi-
mate method for solving many problems in'the theory of plasticity,
based on representation of the eqitationsof plastioity of Hanky in the
form of ordinary Hooke equations. The elasticity paramsters were
found in general to depend on the streas state at the point. The
caloulation was carried out by’ the method of successive approximation,
and the ariginal approximation was assumed to be the elastic
solution,

' The method was used to calculate blades, disks, and shells of
rotation. . - v 7

In & second paper, "Calculation of Structurally-Orthotropic
Shells of Rotation® I,A. Birger developed a method for caloulating
shells of rotation with very frequent reinforcement by means of
longitudinal and annular ribs. The paramsters of elasticity of the
shell and the temperature defarmation vary arbitrarily along the - °
thickness of the shell,

+ Formulas were given for the stresses in the case of plane
_defermation of a cyli:ndrical ahell with lengitudinal reinforcement.

To calculate shells in the region of plasticity or creep (in
accordance with the aging theory), the method of variable elasticity
parameters is-used. . " .

The paper by B. Ya, Britvar (Leningrad Metal Plant) was devoted
to problems-of joining austenitic blades- of gas turbines to pearlite
rotors. s

L. M. Kachanov- (Leningrad State University),in a paper "On an
Approximate Solutioh of Problems of Creep) dwelled on an examination
of -the steady-state creep of a body at specified stresses on the
surface in a power-law variation of the creep. He introduced the
concept of an ideally creeping body. The solution of the problem of
mininum additional scattering is sought in the form of a linear com-
bination of an "elastic™ distribution of etresses and a distribution
of stresses in an-ideally creeping body., The conditions under which
the stressed state amixki in an ideally creeping body coincides
with the stressed state in the corresponding problem for an ideally
plastic body-are indicated.: o

M.A. Radtsig (Central Scientific Research Institute for Boilers
and Turbines imeni Polzunov) delivered a paper, "Calculation of Cer-
tain Parts of Steam and Gas Turbines Under Creep Conditions.”

The paper by B, Ye. Sivchikov (LKVVIA imeni A.F. Mozhayskiy),
"Investigation of Blades of Turbines by the Makimixaf Photoslasticity
Mathod!} was devoted to the results of an experimental investigation of
the stressed state of rotating blades of gas turbines under conditions
of their elastic mbmmmwx stretching and unifarm heating. A study of
the stresses was carried out on natural models of many blades of
gas turbine engines. The procedure of determining the stresses did
not differ in prinoiple from the procedurs used to investigate three-
dimensional stressed states uaing the "freesing" of the defarmations.

I.A, Oding and Z.G. Fridsan (Institute of Metallurgy Academy of
Sciences U S-SR ,imeni A.A, Baykov) in a paper,*Influsnce of Scale
Factor on Long-Term Strength¥ reparted the rssults of an experimental
investigation of the influence of the scale * factor, connected with
the influence of the surface layer on the surface of a metal in creep.
It is shown that the scale factor inflhences considerably the plasti-
city and the service life of samples, and reduces their values with
increasing thickness of the sampls,

The paper by I.A., Oding and V.N, Geminov (Institute of Metallurgy
Academy of Sclences US SR  imeni A.A, Baykov) was devoted to
problems of temperature-forced dependence of lang-term'strength.

B.V. Zver'kov (Central Scientific Research Institute for Boilers
and Turbines imeni Polzunov) in a paper "Creep of Tubes Uader Complex
Loads" reported the results of a study of the creep of tubes under
complex loads. .

The paper by V.S.Chernina (Central Scientific Ressarch Institute
for Boilers and Turbinés), *Problems of Calaulation of Welded Unequal
Pipes and Welded Journals of Turbine Rotors was devoted to the results
of work at the Central Soientific Research Boiler and Turbine Institute
imeni Polzunov towards creating methods of caloulating welded unequal
pipes and welded journals of turbine rotors. The author, considers
elastic-plastic deformation of a welded inhomogeneous tube for two
cases: ideal plasticity and linear strengthening of the materisl, The
residual temperature and working stresses in welded journals of a tur-
bine rotor are determined £r various.loading conditions.

R. N. Sizova (Central Scientific Research Institute of Air-
craft Engines imeni P,I, Baranov) delivered a communication *Summa-
tion of Tendenty to Damage During Testing for Long-Term Strength
Under Conditions of Multiple Overloads."
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: i The conference.notes the known.strength : {h
. emts -strengthening-work' in the fi i
' of research of | trepgthening -work eld 1
2.1, Rozenblyun (Central Boiler and Turbipe Institute imeni . structions,- :utczgzpsm Pi%iitnah:e- stre;gth of mtgr :W
Polzunov) lectured on the subject "On the Strength of Welded Non- i cient and lagging as regards thga: W::irrs is-e';‘t d
homogeneous Disk of a Gas Turbine.” \ . i constryction of power .mﬁcbi.nary equirement ‘o
© " A.D. Kovalenko,and L.A, Il'in (Institute uf Structural Mechanica Bl The invest e mT T T
- Academy of Sciences, U.S.S.R,) delivered a paper on the topic "Inves- .‘ﬁ for astablishigz zf.i:::;: ﬁ;ri‘g:ﬁ%gﬂ;?g"mwd‘m certain material M
tigation of the Streseed Stata of Covered Working Fotors of Centrifi~ it vell founded norms of streagth fo!’feth; i inug;:illnou -:hsre aze now
cal Compressors. ) ;§ turbins . machinery, operating with ﬁgk Api:amﬁat:r::{md lmi-:a‘o;‘. E
- In the adopted resolution, the conference ncted that during H " ke ooar ot e [ R ?
e the last years considerable progress was achieved in work on the g ” aystonatic ébrgﬁznczgzi?ersﬁt‘n e58axY; to. adrry out planned :
determination of statioc strength of elements of turkine machinery. b L Bl °1"ﬂ ation of .strength-norms. . P
; B -

Methods have been developsd for the design of disks and rotors under Al o o
conditions of prolonged operation, experimental research has beea done . . R e A
and is being continued on the strength of disks, and this regearch
essentially justifies.the computation procedure tbat has been developed.
Effective methods have been produced for determining heat stresses in .

+ turbine parts, particularly in constructions with reinforoing
eloments. High epasd electronic computers have found application in
computation practice. The availability of such machines extends the
possibility of employing more accurate and mae complicated
computation methods, which reflect quite well the physical properties
of the material, the features of the construction, and the operating
conditions, On the other hand, any of the existing computational
methods can be brought to such s state, tha% they can be employed
inthe daily practice of the construction bureaus of the plants,

R
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b

=
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c The- conference calls attention of the scientific workers
to the need for developing specific sufficiently simple methods,
suitable for rapid gastery on the part of the plant workers, on ths
compilation of tabl¢s and nomograms that facilitate calculations,

The conference proposes that the use of modern computational
- techniques in the design of turbine machinery should be extended more
and more aznd recommends a considerable increase in the use of com-
puting machines in the computation practice of the construction
- buresus, involving in this project the available computational centers.

In the field of statistical strength, the most urgent problems
at the present time are those connected with the study of strength i R,
of parts under conditions of non-statinnary temperature modes and . ; - . .
variable losds, and also the search for optimum structural forms and B : S T
technological procedures (composite rotars, disks of radial turbine
machines, the use of welding, etec.).

The confersnce calls attention to the need of reinforcing ths
theoretical and particularly experimental research in these directdons.
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Coordination Conference on Stability of Gas Turbinss

Izvestiya Akadomii Naul SSR, ot~ Ye. ", roidyrev

deleniye Tekhuicheskikh Neluc Me-
Khanika 1 Mashinostroyeniye |News

of the Academy of Sciences USSR Mecha~
nics and Machine Building], No. 3, May«
Jung Moscow, page :215

A coordination conference on the strength of-gas turbines, called
together by the Commission on Gas Turbines of the Institute of Mechanics
Academy of Sciences USSR, was held on 6 ~- T Januery 1959, at the Ins~
titute of Mechanics Academy of Sciences USSR,

Participating in the conference were workers from plants of tur~
bine-building industry, scientific-research institutes of the industry,
and of the academies of sciences of the country, as well as of the high-
er institutions of learning in Moscow, Leningrad, Kiev, Novosibirsk, and
Chelyabingk,

Papers were delivered and discussed on the performance of the
plans during 1958, and also for the plans 0f199, in the field of strength
of turbine machines, performed on the part of the principal scientific
research institutes and plants.

The coordination conference noted the following:

1. For successful epewation of the groups that have been created
by the Commission on Coordination and of the scientific-research work in
various directions in the field of strength of turbine machinery, it is
necessary to assign these projects to the institutes in which specia~
lists that head the groups are working.

2. In spite of the numerous resolutions of the preceding confe~
rences (the Leningrad Conference on the Long-Term Static Strength of
Turbine Machinerey -~ November 1957, the Leningrad Conference on Dynamic
Strength -- April 1958, and the Leningrad Conference on Tensometry --
May 1958), the Gosplan of the USSR has thus far not solved the problem
of orgenizing th the USSR an enterprise on the production of tensome-
tric apparatus for the investigation of static and dynamic deformations
under normal and high temperstures.

3+ The program of the Conference on Static Strength of Turbine
Machinery, which should be held in Leningrad in February 1959, was dis-
cussed.

The coordination conference has resolved:

li To assign the working gholips that ars incorporated in the Com-
mission on Strength of Gas Turbines , which carry out the direct coordins-
tion work in their fields , to the institutes and plants in which the
leaders of the groups work,

2. To request again of the Gosplan of the USSR to organize a spe-
cialized enterprise on +he production of tensometric transducers and ap-
paratus associated with them.

3. To raquest the leaders of the organizations, associated with the
problem of strength of turbine mzchinery, to send to the commission (Mos-
cow, Leningradskiy prospekt, 7, Institute of Mechanics Academy of Sciences
USSR) notes concerning the work performed, in order that the coimission
be able to submit them o all the interested organizations as well as plans
of work on the problem of strength.
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